ترغب بنشر مسار تعليمي؟ اضغط هنا

Metabolite essentiality elucidates robustness of Escherichia coli metabolism

176   0   0.0 ( 0 )
 نشر من قبل Pan-Jun Kim
 تاريخ النشر 2007
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.



قيم البحث

اقرأ أيضاً

124 - E. Almaas , B. Kovacs , T. Vicsek 2004
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolisms activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.
We have developed a mathematical model of transcriptional activation by MarA in Escherichia coli, and used the model to analyze measurements of MarA-dependent activity of the marRAB, sodA, and micF promoters in mar-rob- cells. The model rationalizes an unexpected poor correlation between the mid-point of in vivo promoter activity profiles and in vitro equilibrium constants for MarA binding to promoter sequences. Analysis of the promoter activity data using the model yielded the following predictions regarding activation mechanisms: (1) MarA activation of the marRAB, sodA, and micF promoters involves a net acceleration of the kinetics of transitions after RNA polymerase binding, up to and including promoter escape and message elongation; (2) RNA polymerase binds to these promoters with nearly unit occupancy in the absence of MarA, making recruitment of polymerase an insignificant factor in activation of these promoters; and (3) instead of recruitment, activation of the micF promoter might involve a repulsion of polymerase combined with a large acceleration of the kinetics of polymerase activity. These predictions are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. A lack of recruitment in transcriptional activation represents an exception to the textbook description of activation of bacterial sigma-70 promoters. However, use of accelerated polymerase kinetics instead of recruitment might confer a competitive advantage to E. coli by decreasing latency in gene regulation.
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.
Metabolic heterogeneity is widely recognised as the next challenge in our understanding of non-genetic variation. A growing body of evidence suggests that metabolic heterogeneity may result from the inherent stochasticity of intracellular events. How ever, metabolism has been traditionally viewed as a purely deterministic process, on the basis that highly abundant metabolites tend to filter out stochastic phenomena. Here we bridge this gap with a general method for prediction of metabolite distributions across single cells. By exploiting the separation of time scales between enzyme expression and enzyme kinetics, our method produces estimates for metabolite distributions without the lengthy stochastic simulations that would be typically required for large metabolic models. The metabolite distributions take the form of Gaussian mixture models that are directly computable from single-cell expression data and standard deterministic models for metabolic pathways. The proposed mixture models provide a systematic method to predict the impact of biochemical parameters on metabolite distributions. Our method lays the groundwork for identifying the molecular processes that shape metabolic heterogeneity and its functional implications in disease.
The analysis of stress response systems in microorganisms can reveal molecular strategies for regulatory control and adaptation. Here, we focus on the Cad module, a subsystem of E. colis response to acidic stress, which is conditionally activated at low pH only when lysine is available. When expressed, the Cad system counteracts the elevated H+ concentration by converting lysine to cadaverine under the consumption of H+, and exporting cadaverine in exchange for external lysine. Surprisingly, the cad operon displays a transient response, even when the conditions for its induction persist. To quantitatively characterize the regulation of the Cad module, we have experimentally recorded and theoretically modeled the dynamics of important system variables. We establish a quantitative model that adequately describes and predicts the transient expression behavior for various initial conditions. Our quantitative analysis of the Cad system supports a negative feedback by external cadaverine as the origin of the transient response. Furthermore, the analysis puts causal constraints on the precise mechanism of signal transduction via the regulatory protein CadC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا