ﻻ يوجد ملخص باللغة العربية
The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma that resemble their magnetohydrodynamic counterparts. The ambient plasma is composed of electrons with the temperature 2 keV and cool fully ionized nitrogen ions. It is permeated by a spatially uniform magnetic field. A forward shock forms between the shocked ambient medium and the pristine ambient medium, which changes from an ion acoustic one through a slow magnetosonic one to a fast magnetosonic shock with increasing shock propagation angles relative to the magnetic field. The slow magnetosonic shock that propagates obliquely to the magnetic field changes into a tangential discontinuity for a perpendicular propagation direction, which is in line with the magnetohydrodynamic model. The expulsion of the magnetic field by the expanding blast shell triggers an electron-cyclotron drift instability.
The expansion of a radial blast shell into an ambient plasma is modeled with a particle-in-cell (PIC) simulation. The unmagnetized plasma consists of electrons and protons. The formation and evolution of an electrostatic shock is observed, which is t
Recently a filamentation instability was observed when a laser-generated pair cloud interacted with an ambient plasma. The magnetic field it drove was strong enough to magnetize and accelerate the ambient electrons. It is of interest to determine if
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma
Classification of matter through topological phases and topological edge states between distinct materials has been a subject of great interest recently. While lattices have been the main setting for these studies, a relatively unexplored realm for t
Magnetothermodynamics (MTD) is the study of compression and expansion of magnetized plasma with an eye towards identifying equations of state for magneto-inertial fusion experiments. We present recent results from SSX experiments on the thermodynamic