ﻻ يوجد ملخص باللغة العربية
The expansion of a radial blast shell into an ambient plasma is modeled with a particle-in-cell (PIC) simulation. The unmagnetized plasma consists of electrons and protons. The formation and evolution of an electrostatic shock is observed, which is trailed by ion-acoustic solitary waves that grow on the beam of the blast shell ions in the post-shock plasma. In spite of the initially radially symmetric outflow, the solitary waves become twisted and entangled and, hence, they break the radial symmetry of the flow. The waves and their interaction with the shocked ambient ions slows down the blast shell protons and brings the post-shock plasma closer to an equilibrium.
The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma that resemble their magnetohydro
Recently a filamentation instability was observed when a laser-generated pair cloud interacted with an ambient plasma. The magnetic field it drove was strong enough to magnetize and accelerate the ambient electrons. It is of interest to determine if
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma
The expansion of electromagnetic post-solitons emerging from the interaction of a 30 ps, $3times 10^{18}$ W cm$^{-2}$ laser pulse with an underdense deuterium plasma has been observed up to 100 ps after the pulse propagation, when large numbers of po
The expansion of a charge-neutral cloud of electrons and positrons with the temperature 1 MeV into an unmagnetized ambient plasma is examined with a 2D particle-in-cell (PIC) simulation. The pair outflow drives solitary waves in the ambient protons.