ترغب بنشر مسار تعليمي؟ اضغط هنا

1D Kinematics from stars and ionized gas at $zsim0.8$ from the LEGA-C spectroscopic survey of massive galaxies

76   0   0.0 ( 0 )
 نشر من قبل Rachel Bezanson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparison of the observed, spatially integrated stellar and ionized gas velocity dispersions of $sim1000$ massive ($log M_{star}/M_{odot}gtrsim,10.3$) galaxies in the Large Early Galaxy Astrophysics Census (LEGA-C) survey at $0.6lesssim,zlesssim1.0$. The high $S/Nsim20{rmAA^{-1}}$ afforded by 20 hour VLT/VIMOS spectra allows for joint modeling of the stellar continuum and emission lines in all galaxies, spanning the full range of galaxy colors and morphologies. These observed integrated velocity dispersions (denoted as $sigma_{g, int}$ and $sigma_{star, int}$) are related to the intrinsic velocity dispersions of ionized gas or stars, but also include rotational motions through beam smearing and spectral extraction. We find good average agreement between observed velocity dispersions, with $langlelog(sigma_{g, int}/sigma_{star, int})rangle=-0.003$. This result does not depend strongly on stellar population, structural properties, or alignment with respect to the slit. However, in all regimes we find significant scatter between $sigma_{g, int}$ and $sigma_{star, int}$, with an overall scatter of 0.13 dex of which 0.05 dex is due to observational uncertainties. For an individual galaxy, the scatter between $sigma_{g, int}$ and $sigma_{star, int}$ translates to an additional uncertainty of $sim0.24rm{dex}$ on dynamical mass derived from $sigma_{g, int}$, on top of measurement errors and uncertainties from Virial constant or size estimates. We measure the $zsim0.8$ stellar mass Faber-Jackson relation and demonstrate that emission line widths can be used to measure scaling relations. However, these relations will exhibit increased scatter and slopes that are artificially steepened by selecting on subsets of galaxies with progressively brighter emission lines.



قيم البحث

اقرأ أيضاً

A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z~3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Pa ssive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2-1) emission in 8 massive (Mstar ~ 10^11 Msol) galaxies at z~0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census (LEGA-C) survey. We significantly detect half the sample, finding molecular gas fractions <~0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population over-predict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
We explore the connection between the kinematics, structures and stellar populations of massive galaxies at $0.6<z<1.0$ using the Fundamental Plane (FP). Combining stellar kinematic data from the Large Early Galaxy Astrophysics Census (LEGA-C) survey with structural parameters measured from deep Hubble Space Telescope imaging, we obtain a sample of 1419 massive ($log(M_*/M_odot) >10.5$) galaxies that span a wide range in morphology, star formation activity and environment, and therefore is representative of the massive galaxy population at $zsim0.8$. We find that quiescent and star-forming galaxies occupy the parameter space of the $g$-band FP differently and thus have different distributions in the dynamical mass-to-light ratio ($M_{rm dyn}/L_g$), largely owing to differences in the stellar age and recent star formation history, and, to a lesser extent, the effects of dust attenuation. In contrast, we show that both star-forming and quiescent galaxies lie on the same mass FP at $zsim 0.8$, with a comparable level of intrinsic scatter about the plane. We examine the variation in $M_{rm dyn}/M_*$ through the thickness of the mass FP, finding no significant residual correlations with stellar population properties, Sersic index, or galaxy overdensity. Our results suggest that, at fixed size and velocity dispersion, the variations in $M_{rm dyn}/L_g$ of massive galaxies reflect an approximately equal contribution of variations in $M_*/L_g$, and variations in the dark matter fraction or initial mass function.
The Large Early Galaxy Census (LEGA-C) is a Public Spectroscopic Survey of $sim3200$ $K$-band selected galaxies at redshifts $z=0.6-1.0$ with stellar masses M_star > 1e10M_sun, conducted with VIMOS on ESOs Very Large Telescope. The survey is embedded in the COSMOS field ($R.A. = 10h00$; $Dec.=+2deg$). The 20-hour long integrations produce high-$S/N$ continuum spectra that reveal ages, metallicities and velocity dispersions of the stellar populations. LEGA-Cs unique combination of sample size and depth will enable us for the first time to map the stellar content at large look-back time, across galaxies of different types and star-formation activity. Observations started in December 2014 and are planned to be completed by mid 2018, with early data releases of the spectra and value-added products. In this paper we present the science case, the observing strategy, an overview of the data reduction process and data products, and a first look at the relationship between galaxy structure and spectral properties, as it existed 7 Gyr ago.
We present stellar rotation curves and velocity dispersion profiles for 104 quiescent galaxies at $z=0.6-1$ from the Large Early Galaxy Astrophysics Census (LEGA-C) spectroscopic survey. Rotation is typically probed across 10-20kpc, or to an average of 2.7${rm R_e}$. Combined with central stellar velocity dispersions ($sigma_0$) this provides the first determination of the dynamical state of a sample selected by a lack of star formation activity at large lookback time. The most massive galaxies ($M_{star}>2times10^{11},M_{odot}$) generally show no or little rotation measured at 5kpc ($|V_5|/sigma_0<0.2$ in 8 of 10 cases), while ${sim}64%$ of less massive galaxies show significant rotation. This is reminiscent of local fast- and slow-rotating ellipticals and implies that low- and high-redshift quiescent galaxies have qualitatively similar dynamical structures. We compare $|V_5|/sigma_0$ distributions at $zsim0.8$ and the present day by re-binning and smoothing the kinematic maps of 91 low-redshift quiescent galaxies from the CALIFA survey and find evidence for a decrease in rotational support since $zsim1$. This result is especially strong when galaxies are compared at fixed velocity dispersion; if velocity dispersion does not evolve for individual galaxies then the rotational velocity at 5kpc was an average of ${94pm22%}$ higher in $zsim0.8$ quiescent galaxies than today. Considering that the number of quiescent galaxies grows with time and that new additions to the population descend from rotationally-supported star-forming galaxies, our results imply that quiescent galaxies must lose angular momentum between $zsim1$ and the present, presumably through dissipationless merging, and/or that the mechanism that transforms star-forming galaxies also reduces their rotational support.
We present a comparative study of molecular and ionized gas kinematics in nearby galaxies. These results are based on observations from the EDGE survey, which measured spatially resolved $^{12}$CO(J=1-0) in 126 nearby galaxies. Every galaxy in EDGE h as corresponding resolved ionized gas measurements from CALIFA. Using a sub-sample of 17 rotation dominated, star-forming galaxies where precise molecular gas rotation curves could be extracted, we derive CO and H$alpha$ rotation curves using the same geometric parameters out to $gtrsim$1 $R_e$. We find that $sim$75% of our sample galaxies have smaller ionized gas rotation velocities than the molecular gas in the outer part of the rotation curve. In no case is the molecular gas rotation velocity measurably lower than that of the ionized gas. We suggest that the lower ionized gas rotation velocity can be attributed to a significant contribution from extraplanar diffuse ionized gas in a thick, turbulence supported disk. Using observations of the H$gamma$ transition also available from CALIFA, we measure ionized gas velocity dispersions and find that these galaxies have sufficiently large velocity dispersions to support a thick ionized gas disk. Kinematic simulations show that a thick disk with a vertical rotation velocity gradient can reproduce the observed differences between the CO and H$alpha$ rotation velocities. Observed line ratios tracing diffuse ionized gas are elevated compared to typical values in the midplane of the Milky Way. In galaxies affected by this phenomenon, dynamical masses measured using ionized gas rotation curves will be systematically underestimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا