ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of 40-48 GHz dust continuum linear polarization towards the Class 0 young stellar object IRAS 16293-2422

63   0   0.0 ( 0 )
 نشر من قبل Hauyu Baobab Liu Mr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed the new JVLA full polarization observations at 40-48 GHz (6.3-7.5 mm) towards the nearby ($d$ $=$147$pm$3.4 pc) Class 0 YSO IRAS 16293-2422, and compare with the previous SMA observations reported by Rao et al. (2009; 2014). We observed the quasar J1407+2827 which is weakly polarized and can be used as a leakage term calibrator for $<$9 GHz observations, to gauge the potential residual polarization leakage after calibration. We did not detect Stokes Q, U, and V intensities from the observations of J1407+2827, and constrain (3-$sigma$) the residual polarization leakage after calibration to be $lesssim$0.3%. We detect linear polarization from one of the two binary components of our target source, IRAS,16293-2422,B. The derived polarization position angles from our observations are in excellent agreement with those detected from the previous observations of the SMA, implying that on the spatial scale we are probing ($sim$50-1000 au), the physical mechanisms for polarizing the continuum emission do not vary significantly over the wavelength range of $sim$0.88-7.5 mm. We hypothesize that the observed polarization position angles trace the magnetic field which converges from large scale to an approximately face-on rotating accretion flow. In this scenario, magnetic field is predominantly poloidal on $>$100 au scales, and becomes toroidal on smaller scales. However, this interpretation remains uncertain due to the high dust optical depths at the central region of IRAS,16293-2422,B and the uncertain temperature profile. We suggest that dust polarization at wavelengths comparable or longer than 7,mm may still trace interstellar magnetic field. Future sensitive observations of dust polarization in the fully optically thin regime will have paramount importance for unambiguously resolving the magnetic field configuration.



قيم البحث

اقرأ أيضاً

The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4 0,4) of HOCO+ in IRAS 16293-2422. For our observations, we have used EMIR heterodyne 3 mm receiver of the IRAM 30m telescope. The observed abundance of HOCO+ is compared with the simulations using the 3-phase NAUTILUS chemical model. Implications of the measured abundances of HOCO+ to study the chemistry of CO2 ices using JWST-MIRI and NIRSpec are discussed as well.
We present high-resolution (~ 35 au) ALMA Band 6 1.3 mm dust polarization observations of IRAS 16293. These observations spatially resolve the dust polarization across the two protostellar sources and toward the filamentary structures between them. T he dust polarization and inferred magnetic field have complicated structures throughout the region. In particular, we find that the magnetic field is aligned parallel to three filamentary structures. We characterize the physical properties of the filamentary structure that bridges IRAS 16293A and IRAS 16293B and estimate a magnetic field strength of 23-78 mG using the Davis-Chandrasekhar-Fermi method. We construct a toy model for the bridge material assuming that the young stars dominate the mass and gravitational potential of the system. We find that the expected gas flow to each star is of comparable order to the Alfven speed, which suggests that the field may be regulating the gas flow. We also find that the bridging material should be depleted in ~ 1000 yr. If the bridge is part of the natal filament that formed the stars, then it must have accreted new material. Alternatively, the bridge could be a transient structure. Finally, we show that the 1.3 mm polarization morphology of the optically thick IRAS 16293B system is qualitatively similar to dust self-scattering. Based on similar polarization measurements at 6.9 mm, we propose that IRAS 16293B has produced a substantial population of large dust grains with sizes between 200 and 2000 um.
120 - G. Pech 2010
We present and analyze two new high-resolution (approx 0.3 arcsec), high-sensitivity (approx 50 uJy beam-1) Very Large Array 3.6 cm observations of IRAS 16293-2422 obtained in 2007 August and 2008 December. The components A2alpha and A2beta recently detected in this system are still present, and have moved roughly symmetrically away from source A2 at a projected velocity of 30-80 km s-1. This confirms that A2alpha and A2beta were formed as a consequence of a very recent bipolar ejection from A2. Powerful bipolar ejections have long been known to occur in low-mass young stars, but this is -to our knowledge-- the first time that such a dramatic one is observed from its very beginning. Under the reasonable assumption that the flux detected at radio wavelengths is optically thin free-free emission, one can estimate the mass of each ejecta to be of the order of 10^-8 Msun. If the ejecta were created as a consequence of an episode of enhanced mass loss accompanied by an increase in accretion onto the protostar, then the total luminosity of IRAS 16293-2422 ought to have increased by 10-60% over the course of at least several months. Between A2alpha and A2beta, component A2 has reappeared, and the relative position angle between A2 and A1 is found to have increased significantly since 2003-2005. This strongly suggests that A1 is a protostar rather than a shock feature, and that the A1/A2 pair is a tight binary system. Including component B, IRAS 16293-2422 therefore appears to be a very young hierarchical multiple system.
We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources towards IRAS 16293-2422 A, coinciding with compac t ionized gas emission previously observed at radio wavelengths (A1 and A2), confirming the long-known radio sources as protostellar. The emission towards A2 is resolved and traces a dust disk with a FWHM size of ~12 au, while the emission towards A1 sets a limit to the FWHM size of the dust disk of ~4 au. We also detect spatially resolved molecular kinematic tracers near the protostellar disks. Several lines of the J=5-4 rotational transition of HNCO, NH2CHO and t-HCOOH are detected, with which we derived individual line-of-sight velocities. Using these together with the CS (J=2-1), we fit Keplerian profiles towards the individual compact sources and derive masses of the central protostars. The kinematic analysis indicates that A1 and A2 are a bound binary system. Using this new context for the previous 30 years of VLA observations, we fit orbital parameters to the relative motion between A1 and A2 and find the combined protostellar mass derived from the orbit is consistent with the masses derived from the gas kinematics. Both estimations indicate masses consistently higher (0.5< M1<M2<2 Msun) than previous estimations using lower resolution observations of the gas kinematics. The ALMA high-resolution data provides a unique insight into the gas kinematics and masses of a young deeply embedded bound binary system.
The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the f ormation of life. We present the spectroscopic detection of the rotational emission line of water (H$_{2}$O) vapour from the low mass protostar IRAS 16293$-$2422 using the Atacama Large Millimeter/submillimeter Array (ALMA) band 5 observation. The emission line of H$_{2}$O is detected at frequency $ u$ = 183.310 GHz with transition J=3$_{1,3}$$-$2$_{2,2}$. The statistical column density of the emission line of water vapour is $N$(H$_{2}$O) = 4.2$times$10$^{16}$ cm$^{-2}$ with excitation temperature ($T_{ex}$) = 124$pm$10 K. The fractional abundance of H$_{2}$O with respect to H$_{2}$ is 1.44$times$10$^{-7}$ where $N$(H$_{2}$) = 2.9$times$10$^{23}$ cm$^{-2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا