ﻻ يوجد ملخص باللغة العربية
We present and analyze two new high-resolution (approx 0.3 arcsec), high-sensitivity (approx 50 uJy beam-1) Very Large Array 3.6 cm observations of IRAS 16293-2422 obtained in 2007 August and 2008 December. The components A2alpha and A2beta recently detected in this system are still present, and have moved roughly symmetrically away from source A2 at a projected velocity of 30-80 km s-1. This confirms that A2alpha and A2beta were formed as a consequence of a very recent bipolar ejection from A2. Powerful bipolar ejections have long been known to occur in low-mass young stars, but this is -to our knowledge-- the first time that such a dramatic one is observed from its very beginning. Under the reasonable assumption that the flux detected at radio wavelengths is optically thin free-free emission, one can estimate the mass of each ejecta to be of the order of 10^-8 Msun. If the ejecta were created as a consequence of an episode of enhanced mass loss accompanied by an increase in accretion onto the protostar, then the total luminosity of IRAS 16293-2422 ought to have increased by 10-60% over the course of at least several months. Between A2alpha and A2beta, component A2 has reappeared, and the relative position angle between A2 and A1 is found to have increased significantly since 2003-2005. This strongly suggests that A1 is a protostar rather than a shock feature, and that the A1/A2 pair is a tight binary system. Including component B, IRAS 16293-2422 therefore appears to be a very young hierarchical multiple system.
We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources towards IRAS 16293-2422 A, coinciding with compac
The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4
We performed the new JVLA full polarization observations at 40-48 GHz (6.3-7.5 mm) towards the nearby ($d$ $=$147$pm$3.4 pc) Class 0 YSO IRAS 16293-2422, and compare with the previous SMA observations reported by Rao et al. (2009; 2014). We observed
In this article, we report high-resolution (~ 0.1 -- 0.3), high-sensitivity (~ 50 -100 uJy beam-1) Very Large Array 0.7 and 1.3 cm observations of the young stellar system IRAS 16293-2422 in rho-Ophiuchus. In the 0.7 cm image, component A to the sout
We present CO 3-2, SiO 8-7, C34S 7-6, and 878 mum dust continuum subarcsecond angular resolution observations with the SMA toward IRAS 16293-2422 (I16293). The C34S emission traces the 878 mum dust continuum well, and clearly shows a smooth velocity