ﻻ يوجد ملخص باللغة العربية
A new approach for few-femtosecond time-resolved photoelectron spectroscopy in condensed matter that balances the combined needs for both temporal and energy resolution is demonstrated. Here, the method is designed to investigate a prototypical Mott insulator, tantalum disulphide (1T-TaS2), which transforms from its charge-density-wave ordered Mott insulating state to a conducting state in a matter of femtoseconds. The signature to be observed through the phase transition is a charge-density-wave induced splitting of the Ta 4f core-levels, which can be resolved with sub-eV spectral resolution. Combining this spectral resolution with few-femtosecond time resolution enables the collapse of the charge ordered Mott state to be clocked. Precise knowledge of the sub-20-femtosecond dynamics will provide new insight into the physical mechanism behind the collapse and may reveal Mott physics on the timescale of electronic hopping.
Ionization with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin--orbit substates. In this work, we study the coherence properties of such a superposition, created by ionizing xenon at
A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction
A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of o
The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties have limited the availability of nonlinear XUV and x-ray spectroscopies to free electron lasers (FEL). Here, we demonstrate second harm
The bottleneck for an attosecond science experiment is concluded to be the lack of a high-peak-power isolated attosecond pulse source. Therefore, currently, generating an intense attosecond pulse would be one of the highest priority goals. In this pa