ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving light pulses with light in two-level media

73   0   0.0 ( 0 )
 نشر من قبل Ramaz Khomeriki
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction, then scatters the medium and couples to the cavity standing wave by means of the population inversion density variations. We demonstrate that control of the applied amplitudes of the grating field allows to stop the light pulse and to make it move backward (eventually to drive it freely). A simplified limit model of the MB system with variable boundary driving is obtained as a discrete nonlinear Schroedinger equation with tunable external potential. It reproduces qualitatively the dynamics of the driven light pulse.

قيم البحث

اقرأ أيضاً

We have developed a new method based on two cavities containing $chi^{(2)}$ media to reshape optical pulses by an all-optical technique. The system is entirely passive emph{i.e.}, all the energy is brought by the incoming pulse and uses two successiv e optical cavities with independent thresholds. The output pulse is close to a rectangular shape. We show that this technique could be extended to high bit rates and telecommunication wavelength using very small cavities containing current nonlinear materials.
The optics of correlated disordered media is a fascinating research topic emerging at the interface between the physics of waves in complex media and nanophotonics. Inspired by photonic structures in nature and enabled by advances in nanofabrication processes, recent investigations have unveiled how the design of structural correlations down to the subwavelength scale could be exploited to control the scattering, transport and localization of light in matter. From optical transparency to superdiffusive light transport to photonic gaps, the optics of correlated disordered media challenges our physical intuition and offers new perspectives for applications. This article reviews the theoretical foundations, state-of-the-art experimental techniques and major achievements in the study of light interaction with correlated disorder, covering a wide range of systems -- from short-range correlated photonic liquids, to Levy glasses containing fractal heterogeneities, to hyperuniform disordered photonic materials. The mechanisms underlying light scattering and transport phenomena are elucidated on the basis of rigorous theoretical arguments. We overview the exciting ongoing research on mesoscopic phenomena, such as transport phase transitions and speckle statistics, and the current development of disorder engineering for applications such as light-energy management and visual appearance design. Special efforts are finally made to identify the main theoretical and experimental challenges to address in the near future.
We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.
100 - K.Staliunas , C.Serrat , R.Herrero 2005
We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find th e family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals.
496 - B. X. Wang , C. Y. Zhao 2019
Light propagation in disordered media is a fundamental and important problem in optics and photonics. In particular, engineering light-matter interaction in disordered cold atomic ensembles is one of the central topics in modern quantum and atomic op tics. The collective response of dense atomic gases under light excitation, which crucially depends on the spatial distribution of atoms and the geometry of the ensemble, has important impacts on quantum technologies like quantum sensors, atomic clocks and quantum information storage. Here we analyze near-resonant light transmission in two-dimensional dense ultracold atomic ensembles with short-range positional correlations. Based on the coupled-dipole simulations under different atom number densities and correlation lengths, we show that the collective effects are strongly influenced by those positional correlations, manifested as significant shifts and broadening or narrowing of transmission resonance lines. The results show that mean-field theories like Lorentz-Lorenz relation are not capable of describing such collective effects. We further investigate the statistical distribution of eigenstates, which are significantly affected by the interplay between dipole-dipole interactions and position correlations. This work can provide profound implications on collective and cooperative effects in cold atomic ensembles as well as the study of mesoscopic physics concerning light transport in strongly scattering disordered media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا