ترغب بنشر مسار تعليمي؟ اضغط هنا

Table-top Nonlinear Extreme Ultraviolet Spectroscopy

143   0   0.0 ( 0 )
 نشر من قبل Emma Berger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties have limited the availability of nonlinear XUV and x-ray spectroscopies to free electron lasers (FEL). Here, we demonstrate second harmonic generation (SHG) on a table-top XUV source for the first time by observing SHG at the Ti M2,3-edge with a high harmonic seeded soft x-ray laser (HHG-SXRL) [1,2]. Further, this experiment represents the first SHG experiment in the XUV. First-principles electronic structure calculations are used to confirm the surface specificity and resonant enhancement of the SHG signal. The realization of XUV-SHG on a table-top source with femtosecond temporal resolution opens up tremendous opportunities for the study of element-specific dynamics in multi-component systems where surface, interfacial, and bulk-phase asymmetries play a driving role in smaller-scale labs as opposed to FELs.


قيم البحث

اقرأ أيضاً

159 - Emily Sistrunk 2014
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demon strate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.
Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains ch allenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and silicon nitride.
132 - S. Skruszewicz 2021
High-resolution Fourier-transform spectroscopy using table-top sources in the extreme ultraviolet (XUV) spectral range is still in its infancy. In this contribution a significant advance is presented based on a Michelson-type all-reflective split-and -delay autocorrelator operating in a quasi amplitude splitting mode. The autocorrelator works under a grazing incidence angle in a broad spectral range $mathrm{(10,nm - 1,mu m)}$ providing collinear propagation of both pulse replicas and thus a constant phase difference across the beam profile. The compact instrument allows for XUV pulse autocorrelation measurements in the time domain with a single-digit attosecond precision resulting in a resolution of $mathrm{E/Delta E=2000}$. Its performance for spectroscopic applications is demonstrated by characterizing a very sharp electronic transition at $mathrm{26.6,eV}$ in Ar gas induced by the $mathrm{11^{th}}$ harmonic of a frequency-doubled Yb-fiber laser leading to the characteristic $mathrm{3s3p^{6}4p^{1}P^{1}}$ Fano-resonance of Ar atoms. We benchmark our time-domain interferometry results with a high-resolution XUV grating spectrometer and find an excellent agreement. The common-path interferometer opens up new opportunities for short-wavelength femtosecond and attosecond pulse metrology and dynamic studies on extreme time scales in various research fields.
98 - K. Uchida , H. Hirori , T. Aoki 2015
By combining a tilted-pulse-intensity-front scheme using a LiNbO3 crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwid th of about 50 GHz,and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region. This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.
Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, this capability was available only at large-scale X-ray facilities such as synchrotrons. Here we demonstrate the first bright, phase-matched, extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to the linearly polarized high harmonic sources that have been used very successfully for ultrafast element-selective magneto-optic experiments. This work thus represents a critical advance that makes possible element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution, using tabletop-scale setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا