ﻻ يوجد ملخص باللغة العربية
A decentralized coded caching scheme has been proposed by Maddah-Ali and Niesen, and has been shown to alleviate the load of networks. Recently, placement delivery array (PDA) was proposed to characterize the coded caching scheme. In this paper, a neural architecture is first proposed to learn the construction of PDAs. Our model solves the problem of variable size PDAs using mechanism of neural attention and reinforcement learning. It differs from the previous attempts in that, instead of using combined optimization algorithms to get PDAs, it uses sequence-to-sequence model to learn construct PDAs. Numerical results are given to demonstrate that the proposed method can effectively implement coded caching. We also show that the complexity of our method to construct PDAs is low.
Coded caching schemes with low subpacketization and small transmission rate are desirable in practice due to the requirement of low implementation complexity and efficiency of the transmission. Placement delivery arrays (PDA in short) can be used to
The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable $Yinmathbb{R}$ given another random variable $Xinmathbb{R}^{d}$ is of much interest in a variety of statistical contexts. In this paper we propose two estimato
In this paper, the scheduling of downlink file transmission in one cell with the assistance of cache nodes with finite cache space is studied. Specifically, requesting users arrive randomly and the base station (BS) reactively multicasts files to the
In this paper we introduce Neural Network Coding(NNC), a data-driven approach to joint source and network coding. In NNC, the encoders at each source and intermediate node, as well as the decoder at each destination node, are neural networks which ar
The training complexity of deep learning-based channel decoders scales exponentially with the codebook size and therefore with the number of information bits. Thus, neural network decoding (NND) is currently only feasible for very short block lengths