ﻻ يوجد ملخص باللغة العربية
In this paper we introduce Neural Network Coding(NNC), a data-driven approach to joint source and network coding. In NNC, the encoders at each source and intermediate node, as well as the decoder at each destination node, are neural networks which are all trained jointly for the task of communicating correlated sources through a network of noisy point-to-point links. The NNC scheme is application-specific and makes use of a training set of data, instead of making assumptions on the source statistics. In addition, it can adapt to any arbitrary network topology and power constraint. We show empirically that, for the task of transmitting MNIST images over a network, the NNC scheme shows improvement over baseline schemes, especially in the low-SNR regime.
Slotted ALOHA can benefit from physical-layer network coding (PNC) by decoding one or multiple linear combinations of the packets simultaneously transmitted in a timeslot, forming a system of linear equations. Different systems of linear equations ar
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receive
For a (single-source) multicast network, the size of a base field is the most known and studied algebraic identity that is involved in characterizing its linear solvability over the base field. In this paper, we design a new class $mathcal{N}$ of mul
This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude bu
We consider linear network error correction (LNEC) coding when errors may occur on edges of a communication network of which the topology is known. In this paper, we first revisit and explore the framework of LNEC coding, and then unify two well-know