ﻻ يوجد ملخص باللغة العربية
A well known class of objects in combinatorial design theory are {group divisible designs}. Here, we introduce the $q$-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, $q$-Steiner systems, design packings and $q^r$-divisible projective sets. We give necessary conditions for the existence of $q$-analogs of group divsible designs, construct an infinite series of examples, and provide further existence results with the help of a computer search. One example is a $(6,3,2,2)_2$ group divisible design over $operatorname{GF}(2)$ which is a design packing consisting of $180$ blocks that such every $2$-dimensional subspace in $operatorname{GF}(2)^6$ is covered at most twice.
A projective linear code over $mathbb{F}_q$ is called $Delta$-divisible if all weights of its codewords are divisible by $Delta$. Especially, $q^r$-divisible projective linear codes, where $r$ is some integer, arise in many applications of collection
The Assmus-Mattson theorem gives a way to identify block designs arising from codes. This result was broadened to matroids and weighted designs. In this work we present a further two-fold generalisation: first from matroids to polymatroids and also f
For which positive integers $n,k,r$ does there exist a linear $[n,k]$ code $C$ over $mathbb{F}_q$ with all codeword weights divisible by $q^r$ and such that the columns of a generating matrix of $C$ are projectively distinct? The motivation for study
In this paper we investigate combinatorial constructions for $w$-cyclic holely group divisible packings with block size three (briefly by $3$-HGDPs). For any positive integers $u,v,w$ with $uequiv0,1~(bmod~3)$, the exact number of base blocks of a ma
The iterative absorption method has recently led to major progress in the area of (hyper-)graph decompositions. Amongst other results, a new proof of the Existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we