ﻻ يوجد ملخص باللغة العربية
A projective linear code over $mathbb{F}_q$ is called $Delta$-divisible if all weights of its codewords are divisible by $Delta$. Especially, $q^r$-divisible projective linear codes, where $r$ is some integer, arise in many applications of collections of subspaces in $mathbb{F}_q^v$. One example are upper bounds on the cardinality of partial spreads. Here we survey the known results on the possible lengths of projective $q^r$-divisible linear codes.
For which positive integers $n,k,r$ does there exist a linear $[n,k]$ code $C$ over $mathbb{F}_q$ with all codeword weights divisible by $q^r$ and such that the columns of a generating matrix of $C$ are projectively distinct? The motivation for study
A well known class of objects in combinatorial design theory are {group divisible designs}. Here, we introduce the $q$-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, $q$-Steiner systems
We extend the original cylinder conjecture on point sets in affine three-dimensional space to the more general framework of divisible linear codes over $mathbb{F}_q$ and their classification. Through a mix of linear programming, combinatorial techniq
We classify all $q$-ary $Delta$-divisible linear codes which are spanned by codewords of weight $Delta$. The basic building blocks are the simplex codes, and for $q=2$ additionally the first order Reed-Muller codes and the parity check codes. This ge
Given any linear code $C$ over a finite field $GF(q)$ we show how $C$ can be described in a transparent and geometrical way by using the associated Bruen-Silverman code. Then, specializing to the case of MDS codes we use our new approach to offer imp