ﻻ يوجد ملخص باللغة العربية
The iterative absorption method has recently led to major progress in the area of (hyper-)graph decompositions. Amongst other results, a new proof of the Existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we illustrate the method by investigating triangle decompositions: we give a simple proof that a triangle-divisible graph of large minimum degree has a triangle decomposition and prove a similar result for quasi-random host graphs.
We define a notion of vexillar design for the flag variety in the spirit of the spherical designs introduced by Delsarte, Goethals and Seidel. For a finite subgroup of the orthogonal group, we explain how conditions on the group have the orbits of an
A graphical design is a proper subset of vertices of a graph on which many eigenfunctions of the Laplacian operator have mean value zero. In this paper, we show that extremal independent sets make extremal graphical designs, that is, a design on whic
A generalization of forming derived and residual designs from $t$-designs to subspace designs is proposed. A $q$-analog of a theorem by Van Trung, van Leijenhorst and Driessen is proven, stating that if for some (not necessarily realizable) parameter
In this article, three types of joins are introduced for subspaces of a vector space. Decompositions of the Gra{ss}mannian into joins are discussed. This framework admits a generalization of large set recursion methods for block designs to subspace d
A notion of $t$-designs in the symmetric group on $n$ letters was introduced by Godsil in 1988. In particular $t$-transitive sets of permutations form a $t$-design. We derive special lower bounds for $t=1$ and $t=2$ by a power moment method. For gene