ترغب بنشر مسار تعليمي؟ اضغط هنا

A Centralized Multi-stage Non-parametric Learning Algorithm for Opportunistic Spectrum Access

100   0   0.0 ( 0 )
 نشر من قبل Thulasi Tholeti
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Owing to the ever-increasing demand in wireless spectrum, Cognitive Radio (CR) was introduced as a technique to attain high spectral efficiency. As the number of secondary users (SUs) connecting to the cognitive radio network is on the rise, there is an imminent need for centralized algorithms that provide high throughput and energy efficiency of the SUs while ensuring minimum interference to the licensed users. In this work, we propose a multi-stage algorithm that - 1) effectively assigns the available channel to the SUs, 2) employs a non-parametric learning framework to estimate the primary traffic distribution to minimize sensing, and 3) proposes an adaptive framework to ensure that the collision to the primary user is below the specified threshold. We provide comprehensive empirical validation of the method with other approaches.

قيم البحث

اقرأ أيضاً

111 - Chao Gan , Ruida Zhou , Jing Yang 2018
In this paper, we investigate cost-aware joint learning and optimization for multi-channel opportunistic spectrum access in a cognitive radio system. We investigate a discrete time model where the time axis is partitioned into frames. Each frame cons ists of a sensing phase, followed by a transmission phase. During the sensing phase, the user is able to sense a subset of channels sequentially before it decides to use one of them in the following transmission phase. We assume the channel states alternate between busy and idle according to independent Bernoulli random processes from frame to frame. To capture the inherent uncertainty in channel sensing, we assume the reward of each transmission when the channel is idle is a random variable. We also associate random costs with sensing and transmission actions. Our objective is to understand how the costs and reward of the actions would affect the optimal behavior of the user in both offline and online settings, and design the corresponding opportunistic spectrum access strategies to maximize the expected cumulative net reward (i.e., reward-minus-cost). We start with an offline setting where the statistics of the channel status, costs and reward are known beforehand. We show that the the optimal policy exhibits a recursive double threshold structure, and the user needs to compare the channel statistics with those thresholds sequentially in order to decide its actions. With such insights, we then study the online setting, where the statistical information of the channels, costs and reward are unknown a priori. We judiciously balance exploration and exploitation, and show that the cumulative regret scales in O(log T). We also establish a matched lower bound, which implies that our online algorithm is order-optimal. Simulation results corroborate our theoretical analysis.
Multi-user multi-armed bandits have emerged as a good model for uncoordinated spectrum access problems. In this paper we consider the scenario where users cannot communicate with each other. In addition, the environment may appear differently to diff erent users, ${i.e.}$, the mean rewards as observed by different users for the same channel may be different. With this setup, we present a policy that achieves a regret of $O (log{T})$. This paper has been accepted at Asilomar Conference on Signals, Systems, and Computers 2019.
To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) t ransmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.
An opportunistic spectrum access (OSA) for the infrastructure-less (or cognitive ad-hoc) network has received significant attention thanks to emerging paradigms such as the Internet of Things (IoTs) and smart grids. Research in this area has evolved from the r{ho}rand algorithm requiring prior knowledge of the number of active secondary users (SUs) to the musical chair (MC) algorithm where the number of SUs are unknown and estimated independently at each SU. These works ignore the number of collisions in the network leading to wastage of power and bring down the effective life of battery operated SUs. In this paper, we develop algorithms for OSA that learn faster and incurs fewer number of collisions i.e. energy efficient. We consider two types of infrastructure-less decentralized networks: 1) static network where the number of SUs are fixed but unknown, and 2) dynamic network where SUs can independently enter or leave the network. We set up the problem as a multi-player mult-armed bandit and develop two distributed algorithms. The analysis shows that when all the SUs independently implement the proposed algorithms, the loss in throughput compared to the optimal throughput, i.e. regret, is a constant with high probability and significantly outperforms existing algorithms both in terms of regret and number of collisions. Fewer collisions make them ideally suitable for battery operated SU terminals. We validate our claims through exhaustive simulated experiments as well as through a realistic USRP based experiments in a real radio environment.
Grant-free random access is a promising protocol to support massive access in beyond fifth-generation (B5G) cellular Internet-of-Things (IoT) with sporadic traffic. Specifically, in each coherence interval, the base station (BS) performs joint activi ty detection and channel estimation (JADCE) before data transmission. Due to the deployment of a large-scale antennas array and the existence of a huge number of IoT devices, JADCE usually has high computational complexity and needs long pilot sequences. To solve these challenges, this paper proposes a dimension reduction method, which projects the original device state matrix to a low-dimensional space by exploiting its sparse and low-rank structure. Then, we develop an optimized design framework with a coupled full column rank constraint for JADCE to reduce the size of the search space. However, the resulting problem is non-convex and highly intractable, for which the conventional convex relaxation approaches are inapplicable. To this end, we propose a logarithmic smoothing method for the non-smoothed objective function and transform the interested matrix to a positive semidefinite matrix, followed by giving a Riemannian trust-region algorithm to solve the problem in complex field. Simulation results show that the proposed algorithm is efficient to a large-scale JADCE problem and requires shorter pilot sequences than the state-of-art algorithms which only exploit the sparsity of device state matrix.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا