ﻻ يوجد ملخص باللغة العربية
To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) transmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c
In this work, we explore the potential benefits of deploying unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) with sub-6GHz band and small cells terrestrial base stations (TBSs) with millimeter wave (mmWave) band in a hybrid heterogeneo
Enhanced mobile broadband (eMBB) and ultrareliable and low-latency communications (URLLC) are two major expected services in the fifth-generation mobile communication systems (5G). Specifically, eMBB applications support extremely high data rate comm
Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution lat