ترغب بنشر مسار تعليمي؟ اضغط هنا

A Max-Min Task Offloading Algorithm for Mobile Edge Computing Using Non-Orthogonal Multiple Access

146   0   0.0 ( 0 )
 نشر من قبل Vaibhav Kumar
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) transmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.



قيم البحث

اقرأ أيضاً

Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons ider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c omputing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
In this work, we explore the potential benefits of deploying unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) with sub-6GHz band and small cells terrestrial base stations (TBSs) with millimeter wave (mmWave) band in a hybrid heterogeneo us networks (HetNets). A flexible non-orthogonal multiple access (NOMA) based user association policy is proposed. By using the tools from stochastic geometry, new analytical expressions for association probability, coverage probability and spectrum efficiency are derived for characterizing the performance of UAV-aided HetNets under the realistic Air-to-Ground (A2G) channels and the Ground-to-Ground (G2G) channels with a LoS ball blockage model. Finally, we provide insights on the proposed hybrid HetNets by numerical results. We confirm that i) the proposed NOMA enabled HetNets is capable of achieving superior performance compared with the OMA enabled ABSs by setting power allocation factors and targeted signal-to-interference-plus-noise ratio (SINR) threshold properly; ii) there is a tradeoff between the association probabilities and the spectrum efficiency in the NOMA enabled ABSs tier; iii) the coverage probability and spectrum efficiency of the NOMA enabled ABSs tier is largely affected by the imperfect successive interference cancellation (ipSIC) coefficient, power allocation factors and SINR threshold; iv) compared with only sub-6GHz ABSs, mmWave enabled TBSs are capable of enhancing the spectrum efficiency of the HetNets when the mmWave line-of-sight (LoS) link is available.
Enhanced mobile broadband (eMBB) and ultrareliable and low-latency communications (URLLC) are two major expected services in the fifth-generation mobile communication systems (5G). Specifically, eMBB applications support extremely high data rate comm unications, while URLLC services aim to provide stringent latency with high reliability communications. Due to their differentiated quality-of-service (QoS) requirements, the spectrum sharing between URLLC and eMBB services becomes a challenging scheduling issue. In this paper, we aim to investigate the URLLC and eMBB coscheduling/coexistence problem under a puncturing technique in multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. The objective function is formulated to maximize the data rate of eMBB users while satisfying the latency requirements of URLLC users through joint user selection and power allocation scheduling. To solve this problem, we first introduce an eMBB user clustering mechanism to balance the system performance and computational complexity. Thereafter, we decompose the original problem into two subproblems, namely the scheduling problem of user selection and power allocation. We introduce a Gale-Shapley (GS) theory to solve with the user selection problem, and a successive convex approximation (SCA) and a difference of convex (D.C.) programming to deal with the power allocation problem. Finally, an iterative algorithm is utilized to find the global solution with low computational complexity. Numerical results show the effectiveness of the proposed algorithms, and also verify the proposed approach outperforms other baseline methods.
Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution lat ency and device energy consumption, in this paper, we jointly optimize task offloading scheduling and transmit power allocation for MEC systems with multiple independent tasks. A low-complexity sub-optimal algorithm is proposed to minimize the weighted sum of the execution delay and device energy consumption based on alternating minimization. Specifically, given the transmit power allocation, the optimal task offloading scheduling, i.e., to determine the order of offloading, is obtained with the help of flow shop scheduling theory. Besides, the optimal transmit power allocation with a given task offloading scheduling decision will be determined using convex optimization techniques. Simulation results show that task offloading scheduling is more critical when the available radio and computational resources in MEC systems are relatively balanced. In addition, it is shown that the proposed algorithm achieves near-optimal execution delay along with a substantial device energy saving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا