ترغب بنشر مسار تعليمي؟ اضغط هنا

First results of the EDELWEISS-II WIMP search using Ge cryogenic detectors with interleaved electrodes

253   0   0.0 ( 0 )
 نشر من قبل Eric Armengaud
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The EDELWEISS-II collaboration has performed a direct search for WIMP dark matter with an array of ten 400 g heat-and-ionization cryogenic detectors equipped with interleaved electrodes for the rejection of near-surface events. Six months of continuous operation at the Laboratoire Souterrain de Modane have been achieved. The observation of one nuclear recoil candidate above 20 keV in an effective exposure of 144 kgd is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 1.0x10^-7 pb is excluded at 90%CL for a WIMP mass of 80 GeV/c2. This result demonstrates for the first time the very high background rejection capabilities of these simple and robust detectors in an actual WIMP search experiment.



قيم البحث

اقرأ أيضاً

The EDELWEISS-II collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge col lection electrodes with an interleaved geometry enables the efficient rejection of gamma-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg.d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.
116 - E. Armengaud 2010
The EDELWEISS-II experiment uses cryogenic heat-and-ionization detectors in order to detect the rare interactions from possible WIMP dark matter particles on Germanium nuclei. Recently, new-generation detectors with an interleaved electrode geometry were developped and validated, enabling an outstanding rejection of gamma-rays and surface interactions. We present here preliminary results of a one-year WIMP search carried out with ten of such detectors in the Laboratoire Souterrain de Modane. A sensitivity to the spin-independent WIMP-nucleon cross-section of 5 times 10-8 pb was achieved using a 322 kg
The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed i n the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.
The final results of the EDELWEISS-I dark matter search using cryogenic heat-and-ionization Ge detectors are presented. The final data sample corresponds to an increase by a factor five in exposure relative to the previously published results. A reco il energy threshold of 13 keV or better was achieved with three 320g detectors working simultaneously over four months of stable operation. Limits on the spin-independent cross-section for the scattering of a WIMP on a nucleon are derived from an accumulated fiducial exposure of 62 kg.d.
The physics potential of EDELWEISS detectors for the search of low-mass Weakly Interacting Massive Particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely profile likelihood and boosted decision tree. Both current and achievable experimental performance are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above $sim$ 5 GeV/c$^2$. The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross-section of $sigma_{SI} = 7 times 10^{-42}$ cm$^2$ is expected for a WIMP mass in the range 2$-$5 GeV/c$^2$. The requirements for a future hundred-kilogram scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50 eV$_{ee}$, we show that such an experiment installed in an even lower background environment (e.g. at SNOLAB) should allow to observe about 80 $^8$B neutrino events after discrimination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا