ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting proximity effect in a topological insulator using Fe(Te,Se)

91   0   0.0 ( 0 )
 نشر من قبل Ilija Zeljkovic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-T$_{c}$ superconductors have predominantly been used in this effort, but small energy scales of ~1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator Bi$_{2}$Te$_{3}$ in a range of thicknesses on top of a high-T$_{c}$ superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect {Delta}$_{ind}$ as high as ~3.5 meV, which is the largest reported gap induced by proximity to an s-wave superconductor to-date. We find that {Delta}$_{ind}$ decays with Bi$_{2}$Te$_{3}$ thickness, but remains finite even after the topological surface states had been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gaped Bi$_{2}$Te$_{3}$ surface state due to Cooper pairing. Our results establish Fe-based high-T$_{c}$ superconductors as a promising new platform for realizing high-T$_{c}$ topological superconductivity.



قيم البحث

اقرأ أيضاً

It is challenging to grow an epitaxial four-fold compound superconductor (SC) on six-fold topological insulator (TI) platform due to stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) lay er due to accidental, uniaxial lattice match, which is dubbed as hybrid symmetry epitaxy. This new growth mode is critical to stabilizing robust superconductivity with TC as high as 13 K. Furthermore, the superconductivity in this FeTe1-xSex/Bi2Te3 system survives in Te-rich phase with Se content as low as x = 0.03 but vanishes at Se content above x = 0.56, exhibiting a phase diagram that is quite different from that of the conventional Fe(Te,Se) systems. This unique heterostructure platform that can be formed in both TI-on-SC and SC-on-TI sequences opens a route to unprecedented topological heterostructures.
We report on the first local atomic structure study via the pair density function (PDF) analysis of neutron diffraction data and show a direct correlation of local coordinates to TC in the newly discovered superconducting FeSe1-xTex. The isovalent su bstitution of Te for Se such as in FeSe0.5Te0.5 increases Tc by twofold in comparison to a-FeSe without changing the carrier concentration but, on average, decreases the chalcogen-Fe bond angle. However, we find that the local symmetry is lower than the average P4/nmm crystal symmetry, because the Se and Te ions do not share the same site, leading to two distinct z-coordinates that exhibit two types of bond angles with Fe. The angle indeed increases from ~ 104.02o in FeSe to ~105.20o in FeSe0.5Te0.5 between Fe and Se. Simultaneously, ab-initio calculations based on spin density function theory yielded an optimized structure with distinct z-coordinates for Se and Te, in agreement with the experiment. The valence charge distribution in the Fe-Se bonds was found to be different from that in the Fe-Te bonds. Thus, superconductivity in this chalcogenide is closely related to the local structural environment, with direct implications on the multiband magnetism where modulations of the ionic lattice can change the distribution of valence electrons.
114 - T. Machida , Y. Sun , S. Pyon 2018
Majorana quasiparticles (MQPs) in condensed matter play an important role in strategies for topological quantum computing but still remain elusive. Vortex cores of topological superconductors may accommodate MQPs that appear as the zero-energy vortex bound state (ZVBS). An iron-based superconductor Fe(Se,Te) possesses a superconducting topological surface state that has been investigated by scanning tunneling microscopies to detect the ZVBS. However, the results are still controversial. Here, we performed spectroscopic-imaging scanning tunneling microscopy with unprecedentedly high energy resolution to clarify the nature of the vortex bound states in Fe(Se,Te). We found the ZVBS at 0 $pm$ 20 $mu$eV suggesting its MQP origin, and revealed that some vortices host the ZVBS while others do not. The fraction of vortices hosting the ZVBS decreases with increasing magnetic field, while chemical and electronic quenched disorders are apparently unrelated to the ZVBS. These observations elucidate the conditions to achieve the ZVBS, and may lead to controlling MQPs.
Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagentic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experime nt reveals a sizable suppression of magnetic moment due to the superconductivity indicating a possible phase coexistence. Here we propose that the observed suppression of the magnetic moment may be explained due to the proximity effect within a phase separation scenario. We use a two-orbital model to study the proximity effect on a layer of block AFM state induced by neighboring SC layers via an interlayer tunneling mechanism. We argue that the proximity effect in ternary Fe-selenides should be large because of the large interlayer coupling and weak electron correlation. The result of our mean field theory is compared with the neutron experiments semi-quantitatively. The suppression of the magnetic moment due to the SC proximity effect is found to be more pronounced in the d-wave superconductivity and may be enhanced by the frustrated structure of the block AFM state.
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1. 3}$/Nb devices. The conductance spectra of the devices show the presence of a large induced gap in the STI as well as the induction of superconducting correlations in the normal part of the TI on the order of the Thouless energy. The shape of the conductance modulation around zero-energy varies between devices and can be explained by existing theory of s-wave-induced superconductivity in SNN (S is a superconductor, N a superconducting proximized material and N is a normal metal) devices. All the conductance spectra show a conductance dip at the induced gap of the STI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا