ﻻ يوجد ملخص باللغة العربية
We report on the first local atomic structure study via the pair density function (PDF) analysis of neutron diffraction data and show a direct correlation of local coordinates to TC in the newly discovered superconducting FeSe1-xTex. The isovalent substitution of Te for Se such as in FeSe0.5Te0.5 increases Tc by twofold in comparison to a-FeSe without changing the carrier concentration but, on average, decreases the chalcogen-Fe bond angle. However, we find that the local symmetry is lower than the average P4/nmm crystal symmetry, because the Se and Te ions do not share the same site, leading to two distinct z-coordinates that exhibit two types of bond angles with Fe. The angle indeed increases from ~ 104.02o in FeSe to ~105.20o in FeSe0.5Te0.5 between Fe and Se. Simultaneously, ab-initio calculations based on spin density function theory yielded an optimized structure with distinct z-coordinates for Se and Te, in agreement with the experiment. The valence charge distribution in the Fe-Se bonds was found to be different from that in the Fe-Te bonds. Thus, superconductivity in this chalcogenide is closely related to the local structural environment, with direct implications on the multiband magnetism where modulations of the ionic lattice can change the distribution of valence electrons.
Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-T$_{c}$ superconductors have predominantly been used in this effort, but small
Topological superconductivity is one of the frontier research directions in condensed matter physics. One of the unique elementary excitations in topological superconducting state is the Majorana fermion (mode) which is its own antiparticle and obeys
It is challenging to grow an epitaxial four-fold compound superconductor (SC) on six-fold topological insulator (TI) platform due to stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) lay
Majorana quasiparticles (MQPs) in condensed matter play an important role in strategies for topological quantum computing but still remain elusive. Vortex cores of topological superconductors may accommodate MQPs that appear as the zero-energy vortex
In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out a systematic experimental investigation with different irradiation fluences up to 7.30x10^16 cm^-2 and different pro