ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te)

115   0   0.0 ( 0 )
 نشر من قبل Tadashi Machida
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Majorana quasiparticles (MQPs) in condensed matter play an important role in strategies for topological quantum computing but still remain elusive. Vortex cores of topological superconductors may accommodate MQPs that appear as the zero-energy vortex bound state (ZVBS). An iron-based superconductor Fe(Se,Te) possesses a superconducting topological surface state that has been investigated by scanning tunneling microscopies to detect the ZVBS. However, the results are still controversial. Here, we performed spectroscopic-imaging scanning tunneling microscopy with unprecedentedly high energy resolution to clarify the nature of the vortex bound states in Fe(Se,Te). We found the ZVBS at 0 $pm$ 20 $mu$eV suggesting its MQP origin, and revealed that some vortices host the ZVBS while others do not. The fraction of vortices hosting the ZVBS decreases with increasing magnetic field, while chemical and electronic quenched disorders are apparently unrelated to the ZVBS. These observations elucidate the conditions to achieve the ZVBS, and may lead to controlling MQPs.

قيم البحث

اقرأ أيضاً

115 - J.-X. Yin , Zheng Wu , J.-H. Wang 2014
A robust zero-energy bound state (ZBS) in a superconductor, such as a Majorana or Andreev bound state, is often a consequence of non-trivial topological or symmetry related properties, and can provide indispensable information about the superconducti ng state. Here we use scanning tunneling microscopy/spectroscopy to demonstrate, on the atomic scale, that an isotropic ZBS emerges at the randomly distributed interstitial excess Fe sites in the superconducting Fe(Te,Se). This ZBS is localized with a short decay length of ~ 10 {AA}, and surprisingly robust against a magnetic field up to 8 Tesla, as well as perturbations by neighboring impurities. We find no natural explanation for the observation of such a robust zero-energy bound state, indicating a novel mechanism of impurities or an exotic pairing symmetry of the iron-based superconductivity.
Topological superconductivity is one of the frontier research directions in condensed matter physics. One of the unique elementary excitations in topological superconducting state is the Majorana fermion (mode) which is its own antiparticle and obeys the non-Abelian statistics, and thus useful for constructing the fault-tolerant quantum computing. The evidence for Majorana fermions (mode) in condensed matter state is now quickly accumulated. Here we report the easily achievable zero-energy mode on the tunneling spectra on Bi islands deposited on the Fe(Te,Se) superconducting single crystals. We interpret this result as the consequence of proximity effect induced topological superconductivity on the Bi islands with strong spin-orbital coupling effect. The zero-energy mode is argued to be the signature of the Majorana modes in this size confined system.
98 - C. Chen , Q. Liu , T. Z. Zhang 2019
The Majorana zero mode (MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in (Li0.84Fe0.16)OHFeSe. Here using scanning tunneling spectroscopy (STS), we demonstrate that Majorana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state, and consequently, the conductance at zero bias is quantized as 2e2/h. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the top ological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-T$_{c}$ superconductors have predominantly been used in this effort, but small energy scales of ~1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator Bi$_{2}$Te$_{3}$ in a range of thicknesses on top of a high-T$_{c}$ superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect {Delta}$_{ind}$ as high as ~3.5 meV, which is the largest reported gap induced by proximity to an s-wave superconductor to-date. We find that {Delta}$_{ind}$ decays with Bi$_{2}$Te$_{3}$ thickness, but remains finite even after the topological surface states had been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gaped Bi$_{2}$Te$_{3}$ surface state due to Cooper pairing. Our results establish Fe-based high-T$_{c}$ superconductors as a promising new platform for realizing high-T$_{c}$ topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا