ترغب بنشر مسار تعليمي؟ اضغط هنا

Schrodingers cat in an optical sideband

58   0   0.0 ( 0 )
 نشر من قبل Takahiro Serikawa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beamsplitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is downconverted to the carrier frequency to provide a trigger photon. An optical Schrodingers cat state is created by applying the propesed method to a squeezed state at 500MHz sideband, which is generated by an optical parametric oscillator. The Wigner function of the cat state reconstructed from a direct homodyne measurement of the 500MHz sideband modes shows the negativity of $W(0,0) = -0.088pm0.001$ without any loss corrections.

قيم البحث

اقرأ أيضاً

Until now, Schrodingers cat states are generated by subtracting single photons from the whole bandwidth of squeezed vacua. However, it was pointed out recently that the achievable purities are limited in such method (J. Yoshikawa, W. Asavanant, and A . Furusawa, arXiv:1707.08146 [quant-ph] (2017)). In this paper, we used our new photon subtraction method with a narrowband filtering cavity and generated a highly pure Schrodingers cat state with the value of $-0.184$ at the origin of the Wigner function. To our knowledge, this is the highest value ever reported without any loss corrections. The temporal mode also becomes exponentially rising in our method, which allows us to make a real-time quadrature measurement on Schrodingers cat states, and we obtained the value of $-0.162$ at the origin of the Wigner function.
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum process ors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.
Quantum engineering using photonic structures offer new capabilities for atom-photon interactions for quantum optics and atomic physics, which could eventually lead to integrated quantum devices. Despite the rapid progress in the variety of structure s, coherent excitation of the motional states of atoms in a photonic waveguide using guided modes has yet to be demonstrated. Here, we use the waveguide mode of a hollow-core photonic crystal fibre to manipulate the mechanical Fock states of single atoms in a harmonic potential inside the fibre. We create a large array of Schrodinger cat states, a quintessential feature of quantum physics and a key element in quantum information processing and metrology, of approximately 15000 atoms along the fibre by entangling the electronic state with the coherent harmonic oscillator state of each individual atom. Our results provide a useful step for quantum information and simulation with a wide range of photonic waveguide systems.
301 - P. Adam , T. Kiss , Z. Darazs 2015
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition of coherent states around the origo of the phase space. The separation of the coherent states in the superposition will be amplified during the process.
Optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and l_1 norm of coherence in Fock basis based on the prepa red optical cat state at rubidium D1 line. By transmitting the optical cat state through a lossy channel, we also demonstrate the robustness of quantum coherence of optical cat state in the presence of loss, which is different from the decoherence properties of fidelity and Wigner function negativity of the optical cat state. Our results confirm that quantum coherence of optical cat states is robust against loss and pave the way for the application with optical cat states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا