ﻻ يوجد ملخص باللغة العربية
Until now, Schrodingers cat states are generated by subtracting single photons from the whole bandwidth of squeezed vacua. However, it was pointed out recently that the achievable purities are limited in such method (J. Yoshikawa, W. Asavanant, and A. Furusawa, arXiv:1707.08146 [quant-ph] (2017)). In this paper, we used our new photon subtraction method with a narrowband filtering cavity and generated a highly pure Schrodingers cat state with the value of $-0.184$ at the origin of the Wigner function. To our knowledge, this is the highest value ever reported without any loss corrections. The temporal mode also becomes exponentially rising in our method, which allows us to make a real-time quadrature measurement on Schrodingers cat states, and we obtained the value of $-0.162$ at the origin of the Wigner function.
We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beamsplitter in the heralding photon subtraction scheme, where a small portion of the s
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition
We present controllable generation of various kinds of highly nonclassical states of light, including the single photon state and superposition states of mesoscopically distinct components. The high nonclassicality of the generated states is measured
Macroscopic cat states have been widely studied to illustrate fundamental principles of quantum physics as well as their application in quantum information processing. In this paper, we propose a quantum speedup method for adiabatic creation of cat s
Optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and l_1 norm of coherence in Fock basis based on the prepa