ترغب بنشر مسار تعليمي؟ اضغط هنا

Pelee: A Real-Time Object Detection System on Mobile Devices

113   0   0.0 ( 0 )
 نشر من قبل Robert J. Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An increasing need of running Convolutional Neural Network (CNN) models on mobile devices with limited computing power and memory resource encourages studies on efficient model design. A number of efficient architectures have been proposed in recent years, for example, MobileNet, ShuffleNet, and MobileNetV2. However, all these models are heavily dependent on depthwise separable convolution which lacks efficient implementation in most deep learning frameworks. In this study, we propose an efficient architecture named PeleeNet, which is built with conventional convolution instead. On ImageNet ILSVRC 2012 dataset, our proposed PeleeNet achieves a higher accuracy and over 1.8 times faster speed than MobileNet and MobileNetV2 on NVIDIA TX2. Meanwhile, PeleeNet is only 66% of the model size of MobileNet. We then propose a real-time object detection system by combining PeleeNet with Single Shot MultiBox Detector (SSD) method and optimizing the architecture for fast speed. Our proposed detection system2, named Pelee, achieves 76.4% mAP (mean average precision) on PASCAL VOC2007 and 22.4 mAP on MS COCO dataset at the speed of 23.6 FPS on iPhone 8 and 125 FPS on NVIDIA TX2. The result on COCO outperforms YOLOv2 in consideration of a higher precision, 13.6 times lower computational cost and 11.3 times smaller model size.



قيم البحث

اقرأ أيضاً

The rapid development and wide utilization of object detection techniques have aroused attention on both accuracy and speed of object detectors. However, the current state-of-the-art object detection works are either accuracy-oriented using a large m odel but leading to high latency or speed-oriented using a lightweight model but sacrificing accuracy. In this work, we propose YOLObile framework, a real-time object detection on mobile devices via compression-compilation co-design. A novel block-punched pruning scheme is proposed for any kernel size. To improve computational efficiency on mobile devices, a GPU-CPU collaborative scheme is adopted along with advanced compiler-assisted optimizations. Experimental results indicate that our pruning scheme achieves 14$times$ compression rate of YOLOv4 with 49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms the original YOLOv4 by 5$times$ speedup. Source code is at: url{https://github.com/nightsnack/YOLObile}.
156 - Pu Zhao , Wei Niu , Geng Yuan 2020
3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-dri ving cars. To achieve this, we propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques, to enable real-time inference of 3D object detection on the resource-limited edge-computing devices. Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically, without human expertise and assistance. And the evaluated performance of the unified schemes can be fed back to train the generator RNN. The experimental results demonstrate that the proposed framework firstly achieves real-time 3D object detection on mobile devices (Samsung Galaxy S20 phone) with competitive detection performance.
ARTOS is all about creating, tuning, and applying object detection models with just a few clicks. In particular, ARTOS facilitates learning of models for visual object detection by eliminating the burden of having to collect and annotate a large set of positive and negative samples manually and in addition it implements a fast learning technique to reduce the time needed for the learning step. A clean and friendly GUI guides the user through the process of model creation, adaptation of learned models to different domains using in-situ images, and object detection on both offline images and images from a video stream. A library written in C++ provides the main functionality of ARTOS with a C-style procedural interface, so that it can be easily integrated with any other project.
Despite the blooming success of architecture search for vision tasks in resource-constrained environments, the design of on-device object detection architectures have mostly been manual. The few automated search efforts are either centered around non -mobile-friendly search spaces or not guided by on-device latency. We propose MnasFPN, a mobile-friendly search space for the detection head, and combine it with latency-aware architecture search to produce efficient object detection models. The learned MnasFPN head, when paired with MobileNetV2 body, outperforms MobileNetV3+SSDLite by 1.8 mAP at similar latency on Pixel. It is also both 1.0 mAP more accurate and 10% faster than NAS-FPNLite. Ablation studies show that the majority of the performance gain comes from innovations in the search space. Further explorations reveal an interesting coupling between the search space design and the search algorithm, and that the complexity of MnasFPN search space may be at a local optimum.
210 - Zili Liu , Tu Zheng , Guodong Xu 2019
Modern object detectors can rarely achieve short training time, fast inference speed, and high accuracy at the same time. To strike a balance among them, we propose the Training-Time-Friendly Network (TTFNet). In this work, we start with light-head, single-stage, and anchor-free designs, which enable fast inference speed. Then, we focus on shortening training time. We notice that encoding more training samples from annotated boxes plays a similar role as increasing batch size, which helps enlarge the learning rate and accelerate the training process. To this end, we introduce a novel approach using Gaussian kernels to encode training samples. Besides, we design the initiative sample weights for better information utilization. Experiments on MS COCO show that our TTFNet has great advantages in balancing training time, inference speed, and accuracy. It has reduced training time by more than seven times compared to previous real-time detectors while maintaining state-of-the-art performances. In addition, our super-fast version of TTFNet-18 and TTFNet-53 can outperform SSD300 and YOLOv3 by less than one-tenth of their training time, respectively. The code has been made available at url{https://github.com/ZJULearning/ttfnet}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا