ترغب بنشر مسار تعليمي؟ اضغط هنا

The space of volume forms

149   0   0.0 ( 0 )
 نشر من قبل Weiyong He
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

S. Donaldson introduced a metric on the space of volume forms, with fixed total volume on any compact Riemmanian manifold. With this metric, the space of volume forms formally has non-positive curvature. The geodesic equation is a fully nonlinear degenerate elliptic equation. We solve the geodesic equation and its perturbed equation and prove that the space of volume forms is an infinite dimensional non-positively curved metric space in the sense of Alexandrov.

قيم البحث

اقرأ أيضاً

We study the evolution of compact convex curves in two-dimensional space forms. The normal speed is given by the difference of the weighted inverse curvature with the support function, and in the case where the ambient space is the Euclidean plane, i s equivalent to the standard inverse curvature flow. We prove that solutions exist for all time and converge exponentially fast in the smooth topology to a standard round geodesic circle. This has a number of consequences: first, to prove the isoperimetricinequality; second, to establish a range of weighted geometric inequalities; and third, to give a counterexample to the $n=2$ case of a conjecture of Gir~ao-Pinheiro.
The Alexandrov Soap Bubble Theorem asserts that the distance spheres are the only embedded closed connected hypersurfaces in space forms having constant mean curvature. The theorem can be extended to more general functions of the principal curvatures $f(k_1,ldots,k_{n-1})$ satisfying suitable conditions. In this paper we give sharp quantitative estimates of proximity to a single sphere for Alexandrov Soap Bubble Theorem in space forms when the curvature operator $f$ is close to a constant. Under an assumption that prevents bubbling, the proximity to a single sphere is quantified in terms of the oscillation of the curvature function $f$. Our approach provides a unified picture of quantitative studies of the method of moving planes in space forms.
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k $-th mean curvatures with $k=1,cdots,n$, and positive powers of $p$-th power sums $S_p$ with $p>0$. We prove that if the initial hypersurface $M_0$ is smooth and closed and has positive sectional curvatures, then the solution $M_t$ of the flow has positive sectional curvature for any time $t>0$, exists for all time and converges to a geodesic sphere exponentially in the smooth topology. The convergence result can be used to show that certain Alexandrov-Fenchel quermassintegral inequalities, known previously for horospherically convex hypersurfaces, also hold under the weaker condition of positive sectional curvature. In the second part of this paper, we study curvature flows for strictly horospherically convex hypersurfaces in hyperbolic space with speed given by a smooth, symmetric, increasing and homogeneous degree one function $f$ of the shifted principal curvatures $lambda_i=kappa_i-1$, plus a global term chosen to impose a constraint on the quermassintegrals of the enclosed domain, where $f$ is assumed to satisfy a certain condition on the second derivatives. We prove that if the initial hypersurface is smooth, closed and strictly horospherically convex, then the solution of the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology. As applications of the convergence result, we prove a new rigidity theorem on smooth closed Weingarten hypersurfaces in hyperbolic space, and a new class of Alexandrov-Fenchel type inequalities for smooth horospherically convex hypersurfaces in hyperbolic space.
We give a complete classification of submanifolds with parallel second fundamental form of a product of two space forms. We also reduce the classification of umbilical submanifolds with dimension $mgeq 3$ of a product $Q_{k_1}^{n_1}times Q_{k_2}^{n_2 }$ of two space forms whose curvatures satisfy $k_1+k_2 eq 0$ to the classification of $m$-dimensional umbilical submanifolds of codimension two of $Sf^ntimes R$ and $Hy^ntimes R$. The case of $Sf^ntimes R$ was carried out in cite{mt}. As a main tool we derive reduction of codimension theorems of independent interest for submanifolds of products of two space forms.
We find normal forms for parabolic Monge-Ampere equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampere equations with symmetry properties, namely, the existence of classical or nonholonomic intermediate integrals. Our approach is based on the equivalence between parabolic Monge-Ampere equations and particular distributions on a contact manifold, and involves a classification of vector fields lying in the contact structure. These are divided into three types and described in terms of the simplest ones (characteristic fields of first order PDEs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا