ﻻ يوجد ملخص باللغة العربية
We continue our investigation on the asymptotic stability of the peakon. In a first step we extend our asymptotic stability result [29] in the class of functions whose negative part of the momentum density is supported in ] -- $infty$, x 0 ] and the positive part in [x 0 , +$infty$[ for some x 0 $in$ R. In a second step this enables us to prove the asymptotic stability of well-ordered train of antipeakons-peakons and, in particular, of the antipeakon-peakon profile. Finally, in the appendix we prove that in the case of a non negative momentum density the energy at the left of any given point decays to zero as time goes to +$infty$,. This leads to an improvement of the asymptotic stability result stated in [29].
We prove that the peakons are asymptotically H 1-stable, under the flow of the Degasperis-Procesi equation, in the class of functions with a momentum density that belongs to M + (R). The key argument is a rigidity result for uniformly in time exponen
We prove a Liouville property for uniformly almost localized (up to translations) H 1-global solutions of the Camassa-Holm equation with a momentum density that is a non negative finite measure. More precisely, we show that such solution has to be a
We solve the inverse spectral problem associated with periodic conservative multi-peakon solutions of the Camassa-Holm equation. The corresponding isospectral sets can be identified with finite dimensional tori.
In this paper, we study one of generalized Heisenberg ferromagnet equations with self-consistent sources, namely, the so-called M-CIV equation with self-consistent sources (M-CIVESCS). The Lax representation of the M-CIVESCS is presented. We have sho
In this paper, we study orbital stability of peakons for the generalized modified Camassa-Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa-Holm (mCH) equation, and admits Hamiltonian form and single peakons