ترغب بنشر مسار تعليمي؟ اضغط هنا

A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon

66   0   0.0 ( 0 )
 نشر من قبل Luc Molinet
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Luc Molinet




اسأل ChatGPT حول البحث

We prove that the peakons are asymptotically H 1-stable, under the flow of the Degasperis-Procesi equation, in the class of functions with a momentum density that belongs to M + (R). The key argument is a rigidity result for uniformly in time exponentially decaying global solutions that is shared by the Holm-Staley b-family of equations for b $ge$ 1. This extends previous results obtained for the Camassa-Holm equation (b = 2).



قيم البحث

اقرأ أيضاً

108 - Luc Molinet 2018
We continue our investigation on the asymptotic stability of the peakon. In a first step we extend our asymptotic stability result [29] in the class of functions whose negative part of the momentum density is supported in ] -- $infty$, x 0 ] and the positive part in [x 0 , +$infty$[ for some x 0 $in$ R. In a second step this enables us to prove the asymptotic stability of well-ordered train of antipeakons-peakons and, in particular, of the antipeakon-peakon profile. Finally, in the appendix we prove that in the case of a non negative momentum density the energy at the left of any given point decays to zero as time goes to +$infty$,. This leads to an improvement of the asymptotic stability result stated in [29].
203 - Zhiwu Lin , Yue Liu 2007
The Degasperis-Procesi equation can be derived as a member of a one-parameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the Camassa-Holm equation. In this paper, we study the orbital stability problem of the peaked solitons to the Degasperis-Procesi equation on the line. By constructing a Liapunov function, we prove that the shapes of these peakon solitons are stable under small perturbations.
191 - Ying Fu , Yue Liu , 2010
Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guarant eeing the development of singularities in finite time for strong solutions of these two equations are established. The exact blow-up rates are also determined. Finally, geometric descriptions of these two integrable equations from non-stretching invariant curve flows in centro-equiaffine geometries, pseudo-spherical surfaces and affine surfaces are given.
129 - Luc Molinet 2018
We prove a Liouville property for uniformly almost localized (up to translations) H 1-global solutions of the Camassa-Holm equation with a momentum density that is a non negative finite measure. More precisely, we show that such solution has to be a peakon. As a consequence, we prove that peakons are asymptotically stable in the class of H 1-functions with a momentum density that belongs to M + (R). Finally, we also get an asymptotic stability result for train of peakons.
324 - Ji Li , Yue Liu , Qiliang Wu 2019
The Degasperis-Procesi equation is an approximating model of shallow-water wave propagating mainly in one direction to the Euler equations. Such a model equation is analogous to the Camassa-Holm approximation of the two-dimensional incompressible and irrotational Euler equations with the same asymptotic accuracy, and is integrable with the bi-Hamiltonian structure. In the present study, we establish existence and spectral stability results of localized smooth solitons to the Degasperis-Procesi equation on the real line. The stability proof relies essentially on refined spectral analysis of the linear operator corresponding to the second-order variational derivative of the Hamiltonian of the Degasperis-Procesi equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا