ﻻ يوجد ملخص باللغة العربية
In stationary nonequilibrium states a coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir forces or pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a velocity gradient. Specifically, we have obtained explicit expressions for the magnitude of the shear-induced pressure enhancement in a liquid layer between two horizontal plates that complete and correct results previously presented in the literature. In contrast to nonequiibrium Casimir pressures induced by a temperature gradient, kinetic theory shows that nonequilibrium contributions from short-range fluctuations are no longer negligible. In addition, it is noted that computer simulations of model fluids in shear observe effects from molecular correlations at nanoscales that have a different physical origin. The idea that such computer simulations probe shear-induced pressures resulting from coupling of long-wavelength hydrodynamic modes is erroneous.
In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature g
The Casimir interaction between two objects, or between an object and a plane, depends on their relative orientations. We make these angular dependences explicit by considering prolate or oblate spheroids. The variation with orientation is calculated
In stationary nonequilibrium states coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a velocity gr
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-