ترغب بنشر مسار تعليمي؟ اضغط هنا

Kink dynamics in the MSTB Model

304   0   0.0 ( 0 )
 نشر من قبل Alberto Alonso-Izquierdo Dr
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper kink scattering processes are investigated in the Montonen-Sarker-Trullinger-Bishop model. The MSTB model is in fact a one-parametric family of relativistic scalar field theories living in a one-time one-space Minkowski space-time which encompasses two coupled scalar fields. Between the static solutions of the model two kinds of topological kinks are distinguished in a precise range of the family parameter. In that regime there exists one unstable kink exhibiting only one non-null component of the scalar field. Another type of topological kink solutions, stable in this case, includes two different kinks for which the two-components of the scalar field are non-null. Both one-component and two-component topological kinks are accompanied by their antikink partner. The decay of disintegration of the unstable kink to one of the stable pair plus radiation is numerically computed. The pair of stable two-component kinks living respectively on upper and lower half-ellipses in field space belong to identical topological sectors in configuration space and provides an ideal playground to address several scattering events involving one kink and either its own antikinks or either the antikink of the other stable kink of the pair. By means of a numerical computation procedure we shall find and describe interesting physical phenomena. Bion (kink-antikink oscillations) formation, kink reflection, kink-antikink annihilation, kink transmutation and resonances are examples of these type of events. The appearance of these special phenomena emerging in kink-antikink scattering configurations depends critically on the initial collision velocity and the chosen value of the coupling constant parametrizing the family of MSTB models.

قيم البحث

اقرأ أيضاً

In this paper we describe the structure of a class of two-component scalar field models in a (1+1) Minkowskian space-time which generalize the well-known Montonen-Sarker-Trullinger-Bishop -hence MSTB- model. This class includes all the field models w hose static field equations are equivalent to the Newton equations of two-dimensional type I Liouville mechanical systems with a discrete set of instability points. We offer a systematic procedure to characterize these models and to identify the solitary wave or kink solutions as homoclinic or heteroclinic trajectories in the analogous mechanical system. This procedure is applied to a one-parametric family of generalized MSTB models with a degree-eight polynomial as potential energy density.
We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomolnyi-Prasam-Sommerfield (BPS) sector, hosting two zero modes, where they are one of the main factors governing the soliton dynamics. We also show that spectral walls appear as singularities of the dynamical vibrational moduli space.
In this paper, kink scattering in the dimensional reduction of the bosonic sector of a one-parameter family of generalized Wess-Zumino models with three vacuum points is discussed. The value of the model parameter determines the specific location of the vacua. The influence of the vacuum arrangements (evolving from three collinear vacua to three vacua placed at the vertices of an equilateral triangle) on the kink scattering is investigated. Two different regimes can be distinguished: in the first one, two symmetric BPS kinks/antikinks arise whereas in the second one a new different BPS kink/antikink emerges, with the exception of a three-fold rotational symmetry case, where the three topological defects are identical. The scattering between the two symmetric kinks is thoroughly analyzed. Two different scattering channels have been found: kink-kink reflection and kink-kink hybridization. In the last case, the collision between the two symmetric kinks gives rise to the third different kink. Resonance phenomena also appear allowing a vibrating kink to split into two symmetric kinks moving away.
Kink-antikink scattering in the $phi^4$ model is investigated in the limit when the static inter-soliton force vanishes. We observe the formation of spectral walls and, further, identify a new phenomenon, the vacuum wall, whose existence gives rise t o a bouncing structure for the annihilating solitons. Furthermore, we discover higher order spectral walls, i.e., spectral walls which form when higher harmonics enter the continuous spectrum. These higher order spectral walls not only deform the soliton trajectories, they also can be observed easily as very intense radiation bursts.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static inter action is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا