ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral walls in multifield kink dynamics

62   0   0.0 ( 0 )
 نشر من قبل Katarzyna Ole\\'s
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomolnyi-Prasam-Sommerfield (BPS) sector, hosting two zero modes, where they are one of the main factors governing the soliton dynamics. We also show that spectral walls appear as singularities of the dynamical vibrational moduli space.



قيم البحث

اقرأ أيضاً

During defect-antidefect scattering, bound modes frequently disappear into the continuous spectrum before the defects themselves collide. This leads to a structural, nonperturbative change in the spectrum of small excitations. Sometimes the effect ca n be seen as a hard wall from which the defect can bounce off. We show the existence of these spectral walls and study their properties in the $phi^4$ model with BPS preserving impurity, where the spectral wall phenomenon can be isolated because the static force between the antikink and the impurity vanishes. We conclude that such spectral walls should surround all solitons possessing internal modes.
225 - R. Maldonado , R. S. Ward 2014
The moduli space of centred Bogomolny-Prasad-Sommmerfield 2-monopole fields is a 4-dimensional manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole dynamics. The best-known case is that of monopoles on R^3, wher e M is the Atiyah-Hitchin space. More recently, the case of monopoles periodic in one direction (monopole chains) was studied a few years ago. Our aim in this note is to investigate M for doubly-periodic fields, which may be visualized as monopole walls. We identify some of the geodesics on M as fixed-point sets of discrete symmetries, and interpret these in terms of monopole scattering and bound orbits, concentrating on novel features that arise as a consequence of the periodicity.
We study the asymptotic properties of kinks in connection with the deformation procedure. We show that, upon deformation of the field-theoretic model, the asymptotics of kinks can change or remain unchanged, depending on the properties of the deformi ng function. The cases of both explicit and implicit kinks are considered. In addition, we modified the algorithm for obtaining the deformed kink for the case of implicit kinks.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static inter action is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
In this paper the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا