ﻻ يوجد ملخص باللغة العربية
In this paper, kink scattering in the dimensional reduction of the bosonic sector of a one-parameter family of generalized Wess-Zumino models with three vacuum points is discussed. The value of the model parameter determines the specific location of the vacua. The influence of the vacuum arrangements (evolving from three collinear vacua to three vacua placed at the vertices of an equilateral triangle) on the kink scattering is investigated. Two different regimes can be distinguished: in the first one, two symmetric BPS kinks/antikinks arise whereas in the second one a new different BPS kink/antikink emerges, with the exception of a three-fold rotational symmetry case, where the three topological defects are identical. The scattering between the two symmetric kinks is thoroughly analyzed. Two different scattering channels have been found: kink-kink reflection and kink-kink hybridization. In the last case, the collision between the two symmetric kinks gives rise to the third different kink. Resonance phenomena also appear allowing a vibrating kink to split into two symmetric kinks moving away.
We consider a Galilean N=2 supersymmetric theory in 2+1 dimensions with F-term couplings, obtained by null reduction of a relativistic Wess-Zumino model. We compute quantum corrections and we check that, as for the relativistic parent theory, the F-t
In this paper the kink scattering in a two-component scalar field theory model in (1+1)-Minkowskian space-time is addressed. The potential term $U(phi_1,phi_2)$ is given by a polynomial of fourth degree in the first field component and of sixth degre
We deform the well-known three dimensional $mathcal{N}=1$ Wess-Zumino model by adding higher derivative operators (Lee-Wick operators) to its action. The effects of these operators are investigated both at the classical and quantum levels.
We use analytical bootstrap techniques to study supersymmetric monodromy defects in the critical Wess-Zumino model. In preparation for our main result we first study two related systems which are interesting on their own: general monodromy defects (n
We investigate the breakdown of supersymmetry at finite temperature. While it has been proven that temperature always breaks supersymmetry, the nature of this breaking is less clear. On the one hand, a study of the Ward-Takahashi identities suggests