ﻻ يوجد ملخص باللغة العربية
We consider two-dimensional states of matter satisfying an uniform area law for entanglement. We show that the topological entanglement entropy is equal to the minimum relative entropy distance from the reduced state to the set of thermal states of local models. The argument is based on strong subadditivity of quantum entropy. For states with zero topological entanglement entropy, in particular, the formula gives locality of the states at the boundary of a region as thermal states of local Hamiltonians. It also implies that the entanglement spectrum of a two-dimensional region is equal to the spectrum of a one-dimensional local thermal state on the boundary of the region.
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in
We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physi
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly eval
According to quantum theory, the outcomes obtained by measuring an entangled state necessarily exhibit some randomness if they violate a Bell inequality. In particular, a maximal violation of the CHSH inequality guarantees that 1.23 bits of randomnes
Topological entanglement entropy has been extensively used as an indicator of topologically ordered phases. We study the conditions needed for two-dimensional topologically trivial states to exhibit spurious contributions that contaminates topologica