ترغب بنشر مسار تعليمي؟ اضغط هنا

Locality of Edge States and Entanglement Spectrum from Strong Subadditivity

112   0   0.0 ( 0 )
 نشر من قبل Kohtaro Kato
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider two-dimensional states of matter satisfying an uniform area law for entanglement. We show that the topological entanglement entropy is equal to the minimum relative entropy distance from the reduced state to the set of thermal states of local models. The argument is based on strong subadditivity of quantum entropy. For states with zero topological entanglement entropy, in particular, the formula gives locality of the states at the boundary of a region as thermal states of local Hamiltonians. It also implies that the entanglement spectrum of a two-dimensional region is equal to the spectrum of a one-dimensional local thermal state on the boundary of the region.



قيم البحث

اقرأ أيضاً

226 - J. Dubail , N. Read , E. H. Rezayi 2012
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in the thermodynamic limit, assuming generalized screening (i.e. short-range correlations only) inside the quantum Hall droplet, and using the language of boundary conformal field theory (boundary CFT). These inner products take universal values in this limit: they are equal to the corresponding inner products in the bulk 2d chiral CFT which underlies the trial wavefunction. This is a bulk/edge correspondence; it shows the equality between equal-time correlators along the edge and the correlators of the bulk CFT up to a Wick rotation. This approach is then used to analyze the entanglement spectrum (ES) of the ground state obtained with a bipartition AcupB in real-space. Starting from our universal result for inner products in the thermodynamic limit, we tackle corrections to scaling using standard field-theoretic and renormalization group arguments. We prove that generalized screening implies that the entanglement Hamiltonian H_E = - log {rho}_A is isospectral to an operator that is local along the cut between A and B. We also show that a similar analysis can be carried out for particle partition. We discuss the close analogy between the formalism of trial wavefunctions given by conformal blocks and Tensor Product States, for which results analogous to ours have appeared recently. Finally, the edge theory and entanglement spectrum of px + ipy paired superfluids are treated in a similar fashion in the appendix.
We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physi cs of these topologically ordered systems. We show, by constructing one to one maps to the particle partition entanglement spectra, that the counting of the real-space entanglement spectra levels for different particle number sectors versus their angular momentum along the spatial partition boundary is equal to the counting of states for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same particle and flux numbers. This proves that, for an ideal model state described by a conformal field theory, the real-space entanglement spectra level counting is bounded by the counting of the conformal field theory edge modes. This bound is known to be saturated in the thermodynamic limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we find that the real-space entanglement spectra indeed display the edge modes dispersion relations expected from their corresponding conformal field theories. We also numerically find that the real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches, which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole excitations. We also numerically compute the entanglement entropy for the nu=1 integer quantum Hall state with real-space partitions and compare against the analytic prediction. We find that the entanglement entropy indeed scales linearly with the boundary length for large enough systems, but that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading topological entanglement entropy term.
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly eval uate the bipartite entanglement of random pure states in large constrained Hilbert spaces. The resulting entanglement spectra may be classified into `phases depending on their singularities. Our closed solution for the spectra in the simplest class of constraints reveals a non-trivial phase diagram with a Marchenko-Pastur (MP) phase which terminates in a critical point with new singularities. The much studied Rydberg-blockaded/Fibonacci chain lies in the MP phase with a modified Page correction to the entanglement entropy, $Delta S_1 = 0.513595cdots$. Our results predict the entanglement of infinite temperature eigenstates in thermalizing constrained systems and provide a baseline for numerical studies.
According to quantum theory, the outcomes obtained by measuring an entangled state necessarily exhibit some randomness if they violate a Bell inequality. In particular, a maximal violation of the CHSH inequality guarantees that 1.23 bits of randomnes s are generated by the measurements. However, by performing measurements with binary outcomes on two subsystems one could in principle generate up to two bits of randomness. We show that correlations that violate arbitrarily little the CHSH inequality or states with arbitrarily little entanglement can be used to certify that close to the maximum of two bits of randomness are produced. Our results show that non-locality, entanglement, and the amount of randomness that can be certified in a Bell-type experiment are inequivalent quantities. From a practical point of view, they imply that device-independent quantum key distribution with optimal key generation rate is possible using almost-local correlations and that device-independent randomness generation with optimal rate is possible with almost-local correlations and with almost-unentangled states.
Topological entanglement entropy has been extensively used as an indicator of topologically ordered phases. We study the conditions needed for two-dimensional topologically trivial states to exhibit spurious contributions that contaminates topologica l entanglement entropy. We show that if the state at the boundary of a subregion is a stabilizer state, then it has a non-zero spurious contribution to the region if and only if, the state is in a non-trivial one-dimensional $G_1times G_2$ symmetry-protected-topological (SPT) phase. However, we provide a candidate of a boundary state that has a non-zero spurious contribution but does not belong to any such SPT phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا