ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomness vs Non Locality and Entanglement

109   0   0.0 ( 0 )
 نشر من قبل Antonio Acin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to quantum theory, the outcomes obtained by measuring an entangled state necessarily exhibit some randomness if they violate a Bell inequality. In particular, a maximal violation of the CHSH inequality guarantees that 1.23 bits of randomness are generated by the measurements. However, by performing measurements with binary outcomes on two subsystems one could in principle generate up to two bits of randomness. We show that correlations that violate arbitrarily little the CHSH inequality or states with arbitrarily little entanglement can be used to certify that close to the maximum of two bits of randomness are produced. Our results show that non-locality, entanglement, and the amount of randomness that can be certified in a Bell-type experiment are inequivalent quantities. From a practical point of view, they imply that device-independent quantum key distribution with optimal key generation rate is possible using almost-local correlations and that device-independent randomness generation with optimal rate is possible with almost-local correlations and with almost-unentangled states.

قيم البحث

اقرأ أيضاً

Entangling quantum systems with different characteristics through the exchange of photons is a prerequisite for building future quantum networks. Proving the presence of entanglement between quantum memories for light working at different wavelengths furthers this goal. Here, we report on a series of experiments with a thulium-doped crystal, serving as a quantum memory for 794 nm photons, an erbium-doped fibre, serving as a quantum memory for telecommunication-wavelength photons at 1535 nm, and a source of photon pairs created via spontaneous parametric down-conversion. Characterizing the photons after re-emission from the two memories, we find non-classical correlations with a cross-correlation coefficient of $g^{(2)}_{12} = 53pm8$; entanglement preserving storage with input-output fidelity of $mathcal{F}_{IO}approx93pm2%$; and non-locality featuring a violation of the Clauser-Horne-Shimony-Holt Bell-inequality with $S= 2.6pm0.2$. Our proof-of-principle experiment shows that entanglement persists while propagating through different solid-state quantum memories operating at different wavelengths.
100 - Harry Buhrman 2009
Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.
Two parts of an entangled quantum state can have a correlation in their joint behavior under measurements that is unexplainable by shared classical information. Such correlations are called non-local and have proven to be an interesting resource for information processing. Since non-local correlations are more useful if they are stronger, it is natural to ask whether weak non-locality can be amplified. We give an affirmative answer by presenting the first protocol for distilling non-locality in the framework of generalized non-signaling theories. Our protocol works for both quantum and non-quantum correlations. This shows that in many contexts, the extent to which a single instance of a correlation can violate a CHSH inequality is not a good measure for the usefulness of non-locality. A more meaningful measure follows from our results.
86 - Byoung S. Ham 2021
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas limited to microscopic regimes directly governed by Heisenberg uncertainty principle via quantum superposition, resulting in nondeterministic a nd probabilistic quantum features. Such quantum features cannot be generated by classical means. Here, a pure classical method of on-demand entangled light-pair generation is presented in a macroscopic regime via basis randomness. This conflicting idea of conventional quantum mechanics invokes a fundamental question about both classicality and quantumness, where superposition is key to its resolution.
Contextuality is often referred to as a generalization of non-locality. In this work, using the hypergraph approach for contextuality we show how to associate a contextual scenario to a general k-partite non local game, and consider the reverse direc tion: how and when is it possible to represent a general contextuality scenario as a non local game. Using the notion of conditional contextuality, we show that it is possible to embed any contextual scenario in a two players non local game. We also discuss different equivalences of contextuality scenarios and show that the construction used in the proof is not optimal by giving a simpler bipartite non local game when the contextual scenario is a graph instead of a general hypergraph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا