ﻻ يوجد ملخص باللغة العربية
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly evaluate the bipartite entanglement of random pure states in large constrained Hilbert spaces. The resulting entanglement spectra may be classified into `phases depending on their singularities. Our closed solution for the spectra in the simplest class of constraints reveals a non-trivial phase diagram with a Marchenko-Pastur (MP) phase which terminates in a critical point with new singularities. The much studied Rydberg-blockaded/Fibonacci chain lies in the MP phase with a modified Page correction to the entanglement entropy, $Delta S_1 = 0.513595cdots$. Our results predict the entanglement of infinite temperature eigenstates in thermalizing constrained systems and provide a baseline for numerical studies.
We compute concurrence, a measure of bipartite entanglement, of the first excited state of the $1$-D Heisenberg frustrated $J_1$-$J_2$ spin-chain and observe a sudden change in the entanglement of the eigen state near the coupling strength $alpha=J_2
We present an algorithm that extends existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to include bosons in general and phonons in particular. We introduce a qubit representation for the low-
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the
We elucidate the relationship between Schrodinger-cat-like macroscopicity and geometric entanglement, and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in u
We study t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived.