ﻻ يوجد ملخص باللغة العربية
The modification of the effect of interactions of a particle as a function of its pre- and postselected states is analyzed theoretically and experimentally. The universality property of this modification in the case of local interactions of a spatially pre- and postselected particle has been found. It allowed to define an operational approach for characterization of the presence of a quantum particle in a particular place: the way it modifies the effect of local interactions. The experiment demonstrating this universality property provides an efficient interferometric alignment method, in which the beam on a single detector throughout one phase scan yields all misalignment parameters.
Quantum weak measurement has attracted much interest recently [J. Dressel et al., Rev. Mod. Phys. 86, 307 (2014)] because it could amplify some weak signals and provide a technique to observe nonclassical phenomena. Here, we apply this technique to s
Universality of the weak interactions is reviewed, with special emphasis on the origin of the Cabibbo theory of strange particles beta-decays and its role in the discovery of the unified Electroweak Theory. Achievements and present challenges of the
We study the quantum computational power of a generic class of anisotropic solid state Hamiltonians. A universal set of encoded logic operations are found which do away with difficult-to-implement single-qubit gates in a number of quantum computer pr
We consider a typical realization of a qubit as a single particle in two-path interferometric circuits built from phase shifters, beam splitters and detectors. This framework is often taken as a standard example illustrating various paradoxes and qua
Universality or near-universality of citation distributions was found empirically a decade ago but its theoretical justification has been lacking so far. Here, we systematically study citation distributions for different disciplines in order to chara