ﻻ يوجد ملخص باللغة العربية
We consider a typical realization of a qubit as a single particle in two-path interferometric circuits built from phase shifters, beam splitters and detectors. This framework is often taken as a standard example illustrating various paradoxes and quantum effects, including non-locality. In this paper we show that it is possible to simulate the behaviour of such circuits in a classical manner using stochastic gates and two kinds of particles, real ones and ghosts, which interact only locally. The model has built-in limited information gain and state disturbance in measurements which are blind to ghosts. We demonstrate that predictions of the model are operationally indistinguishable from the quantum case of a qubit, and allegedly non-local effects arise only on the epistemic level of description by the agent whose knowledge is incomplete due to the restricted means of investigating the system.
Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectional routing of readout signals, and protect the quantum systems from unw
Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this level of tolerance, numerically st
The local and non-local contents of non-local probability distributions are studied using the approach of Elitzur, Popescu and Rohrlich [Phys. Lett. A textbf{162}, 25 (1992)]. This work focuses on distributions that can be obtained by single-copy von
We examine entanglement dynamics via concurrence among four two-state systems labeled $A, ~a, ~B, ~b$. The four systems are arranged on an addressable lattice in such a way that $A$ and $a$ at one location labeled $Aa$ can interact with each other vi
We demonstrate the transition from local to global noise in a two-qubit all-optical quantum simulator subject to classical random fluctuations. Qubits are encoded in the polarization degree of freedom of two entangled photons generated by parametric