ﻻ يوجد ملخص باللغة العربية
In the context of electromagnetism and nonlinear optical interactions damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [G. W. Ford and R. F. OConnell, Phys. Lett. A, 157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density, and nonlocal contributions that stem from the spatial derivative of the magnetic field and discuss the conditions that could modify both linear and nonlinear electromagnetic responses.
The origin of long-range attractive interactions has fascinated scientist along centuries. The remarkable Fatio-LeSages corpuscular theory, introduced as early as in 1690 and generalized to electromagnetic waves by Lorentz, proposed that, due to thei
Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due t
Twisted light is light carrying orbital angular momentum. The profile of such a beam is a ring-like structure with a node at the beam axis, where a phase singularity exits. Due to the strong spatial inhomogeneity the mathematical description of twist
We propose and theoretically analyze a new vibrational spectroscopy, termed electron- and light-induced stimulated Raman (ELISR) scattering, that combines the high spatial resolution of electron microscopy with the molecular sensitivity of surface-en
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light