ترغب بنشر مسار تعليمي؟ اضغط هنا

Reevaluation of radiation reaction and consequences for light-matter interactions at the nanoscale

357   0   0.0 ( 0 )
 نشر من قبل Michael Scalora
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of electromagnetism and nonlinear optical interactions damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [G. W. Ford and R. F. OConnell, Phys. Lett. A, 157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density, and nonlocal contributions that stem from the spatial derivative of the magnetic field and discuss the conditions that could modify both linear and nonlinear electromagnetic responses.

قيم البحث

اقرأ أيضاً

The origin of long-range attractive interactions has fascinated scientist along centuries. The remarkable Fatio-LeSages corpuscular theory, introduced as early as in 1690 and generalized to electromagnetic waves by Lorentz, proposed that, due to thei r mutual shadowing, two absorbing particles in an isotropic radiation field experience an attractive force which follows a gravity-like inverse square distance law. Similar Mock Gravity interactions were later introduced by Spitzer and Gamow in the context of Galaxy formation but their actual relevance in Cosmology has never been unambiguously established. Here we predict the existence of Mock-Gravity, inverse square distance, attractive forces between two identical molecules or nanoparticles in a quasi monochromatic isotropic random light field, whenever the light frequency is tuned to an absorption line such that the real part of the particles electric polarizability is zero, i.e. at the so-called Froehlich resonance. These interactions are scale independent, holding for both near and far-field separation distances.
Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due t o its neglect of quantum mechanical effects such as nonlocality, electronic spill-out, and Landau damping. Here, we show how this neglect can be remedied by presenting a unified theoretical treatment of mesoscopic electrodynamics grounded on the framework of Feibelman $d$-parameters. Crucially, our technique naturally incorporates nonclassical resonance shifts and surface-enabled Landau damping - a nonlocal damping effect - which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism presented here gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous and general platform to incorporate nonclassical effects in plasmon-empowered nanophotonic phenomena.
366 - G. F. Quinteiro , D. E. Reiter , 2014
Twisted light is light carrying orbital angular momentum. The profile of such a beam is a ring-like structure with a node at the beam axis, where a phase singularity exits. Due to the strong spatial inhomogeneity the mathematical description of twist ed-light--matter interaction is non-trivial, in particular close to the phase singularity, where the commonly used dipole-moment approximation cannot be applied. In this paper we show that, if the polarization and the orbital angular momentum of the twisted-light beam have the same sign, a Hamiltonian similar to the dipole-moment approximation can be derived. However, if the signs of polarization and orbital angular momentum differ, in general the magnetic parts of the light beam become of significant importance and an interaction Hamiltonian which only accounts for electric fields, as in the dipole-moment approximation, is inappropriate. We discuss the consequences of these findings for twisted-light excitation of a semiconductor nanostructures, e.g., a quantum dot, placed at the phase singularity.
We propose and theoretically analyze a new vibrational spectroscopy, termed electron- and light-induced stimulated Raman (ELISR) scattering, that combines the high spatial resolution of electron microscopy with the molecular sensitivity of surface-en hanced Raman spectroscopy. With ELISR, electron-beam excitation of plasmonic nanoparticles is utilized as a spectrally-broadband but spatially-confined Stokes beam in the presence of a diffraction-limited pump laser. To characterize this technique, we develop a numerical model and conduct full-field electromagnetic simulations to investigate two distinct nanoparticle geometries, nanorods and nanospheres, coated with a Raman-active material. Our results show the significant ($10^6$-$10^7$) stimulated Raman enhancement that is achieved with dual electron and optical excitation of these nanoparticle geometries. Importantly, the spatial resolution of this vibrational spectroscopy for electron microscopy is solely determined by the nanoparticle geometry and the plasmon mode volume. Our results highlight the promise of ELISR for simultaneous high-resolution electron microscopy with sub-diffraction-limited Raman spectroscopy, complementing advances in superresolution microscopy, correlated light and electron microscopy, and vibrational electron energy loss spectroscopy.
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light -matter interactions has remained elusive and has hampered further progress in applications of EP physics. Here, we demonstrate the emergence of EPs in the electrically controlled interaction of light with a collection of organic molecules in the terahertz regime at room temperature. We show, using time-domain terahertz spectroscopy, that the intensity and phase of terahertz pulses can be controlled by a gate voltage which drives the device across the EP. This fully electrically-tuneable system allows reconstructing the Riemann surface associated with the complex energy landscape and provides a topological control of light by tuning the loss-imbalance and frequency detuning of interacting modes. We anticipate that our work could pave the way for new means of dynamic control on the intensity and phase of terahertz field, developing topological optoelectronics, and studying the manifestations of EP physics in the quantum correlations of the light emitted by a collection of emitters coupled to resonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا