ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmon-Emitter Interactions at the Nanoscale

201   0   0.0 ( 0 )
 نشر من قبل Thomas Christensen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due to its neglect of quantum mechanical effects such as nonlocality, electronic spill-out, and Landau damping. Here, we show how this neglect can be remedied by presenting a unified theoretical treatment of mesoscopic electrodynamics grounded on the framework of Feibelman $d$-parameters. Crucially, our technique naturally incorporates nonclassical resonance shifts and surface-enabled Landau damping - a nonlocal damping effect - which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism presented here gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous and general platform to incorporate nonclassical effects in plasmon-empowered nanophotonic phenomena.



قيم البحث

اقرأ أيضاً

Strong light-matter interactions in both the single-emitter and collective strong coupling regimes attract significant attention due to emerging quantum and nonlinear optics applications, as well as opportunities for modifying material-related proper ties. Further exploration of these phenomena requires an appropriate theoretical methodology, which is demanding since polaritons are at the intersection between quantum optics, solid state physics and quantum chemistry. Fortunately, however, nanoscale polaritons can be realized in small plasmon-molecule systems, which in principle allows treating them using ab initio methods, although this has not been demonstrated to date. Here, we show that time-dependent density-functional theory (TDDFT) calculations can access the physics of nanoscale plasmon-molecule hybrids and predict vacuum Rabi splitting in a system comprising a few-hundred-atom aluminum nanoparticle interacting with one or several benzene molecules. We show that the cavity quantum electrodynamics approach holds down to resonators on the order of a few cubic nanometers, yielding a single-molecule coupling strength exceeding 200 meV due to a massive vacuum field value of 4.5 V/nm. In a broader perspective, our approach enables parameter-free in-depth studies of polaritonic systems, including ground state, chemical and thermodynamic modifications of the molecules in the strong-coupling regime, which may find important use in emerging applications such as cavity enhanced catalysis.
Hybrid photonic-plasmonic nanostructures allow one to engineer coupling of quantum emitters and cavity modes accounting for the direct coherent and environment mediated dissipative pathways. Using generalized plasmonic Dicke model, we explore the non -equilibrium phase diagram with respect to these interactions. The analysis shows that their interplay results in the extension of the superradiant and regular lasing states to the dissipative coupling regime and an emergent lasing phase without population inversion having boundary with the superradiant and normal states. Calculated photon emission spectra are demonstrated to carry distinct signatures of these phases.
95 - Nancy Rahbany 2018
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. Oppositely, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. FDTD simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
The local density of optical states governs an emitters lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanome ters, which complicates the use of optical methods to spatially probe the emitter-plasmon coupling. Here we show that a combination of electron-based imaging, spectroscopies and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatio-temporal resolutions. Due to the large variability of radiative lifetimes of emitters embedded in nanoparticles with inhomogeneous sizes we relied on a statistical approach to unambiguously probe the coupling between nitrogen-vacancy centers (NV^0) in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the NV^0 excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a statistically significant lifetime reduction for dimers.
A mechanism of stimulated emission of electromagnetic radiation by an electron beam in carbon nanotubes is theoretically considered. Three basic properties of carbon nanotubes, a strong slowing down of surface electromagnetic waves, ballisticity of t he electron motion over typical nanotube length, and extremely high electron current density reachable in nanotubes, allow proposing them as candidates for the development of nano-scale Chernekov-type emitters, analogous to traveling wave tube and free electron laser. Dispersion equations of the electron beam instability and the threshold conditions of the stimulated emission have been derived and analyzed, demonstrating realizability of the nanotube-based nanoFEL at realistic parameters of nanotubes and electronic beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا