ترغب بنشر مسار تعليمي؟ اضغط هنا

Light induced Mock Gravity at the nanoscale

100   0   0.0 ( 0 )
 نشر من قبل Juan Jose Saenz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of long-range attractive interactions has fascinated scientist along centuries. The remarkable Fatio-LeSages corpuscular theory, introduced as early as in 1690 and generalized to electromagnetic waves by Lorentz, proposed that, due to their mutual shadowing, two absorbing particles in an isotropic radiation field experience an attractive force which follows a gravity-like inverse square distance law. Similar Mock Gravity interactions were later introduced by Spitzer and Gamow in the context of Galaxy formation but their actual relevance in Cosmology has never been unambiguously established. Here we predict the existence of Mock-Gravity, inverse square distance, attractive forces between two identical molecules or nanoparticles in a quasi monochromatic isotropic random light field, whenever the light frequency is tuned to an absorption line such that the real part of the particles electric polarizability is zero, i.e. at the so-called Froehlich resonance. These interactions are scale independent, holding for both near and far-field separation distances.

قيم البحث

اقرأ أيضاً

We introduce a microscopy technique that facilitates the prediction of spatial features of chirality of nanoscale samples by exploiting photo-induced optical force exerted on an achiral tip in the vicinity of the test specimen. The tip-sample interac tive system is illuminated by structured light to probe both the transverse and longitudinal (with respect to the beam propagation direction) components of the sample magnetoelectric polarizability as the manifestation of its sense of handedness, i.e., chirality. We specifically prove that although circularly polarized waves are adequate to detect the transverse polarizability components of the sample, they are unable to probe the longitudinal component. To overcome this inadequacy, we propose a judiciously engineered combination of radially and azimuthally polarized beams, as optical vortices possessing pure longitudinal electric and magnetic field components along their vortex axis, respectively, hence probing longitudinal chirality. The proposed technique may benefit branches of science like stereochemistry, biomedicine, physical and material science, and pharmaceutics
We propose and theoretically analyze a new vibrational spectroscopy, termed electron- and light-induced stimulated Raman (ELISR) scattering, that combines the high spatial resolution of electron microscopy with the molecular sensitivity of surface-en hanced Raman spectroscopy. With ELISR, electron-beam excitation of plasmonic nanoparticles is utilized as a spectrally-broadband but spatially-confined Stokes beam in the presence of a diffraction-limited pump laser. To characterize this technique, we develop a numerical model and conduct full-field electromagnetic simulations to investigate two distinct nanoparticle geometries, nanorods and nanospheres, coated with a Raman-active material. Our results show the significant ($10^6$-$10^7$) stimulated Raman enhancement that is achieved with dual electron and optical excitation of these nanoparticle geometries. Importantly, the spatial resolution of this vibrational spectroscopy for electron microscopy is solely determined by the nanoparticle geometry and the plasmon mode volume. Our results highlight the promise of ELISR for simultaneous high-resolution electron microscopy with sub-diffraction-limited Raman spectroscopy, complementing advances in superresolution microscopy, correlated light and electron microscopy, and vibrational electron energy loss spectroscopy.
In the context of electromagnetism and nonlinear optical interactions damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiati on reaction method presented in [G. W. Ford and R. F. OConnell, Phys. Lett. A, 157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density, and nonlocal contributions that stem from the spatial derivative of the magnetic field and discuss the conditions that could modify both linear and nonlinear electromagnetic responses.
170 - Saman Jahani , Zubin Jacob 2014
The integration of nanoscale electronics with conventional optical devices is restricted by the diffraction limit of light. Metals can confine light at the subwavelength scales needed, but they are lossy, while dielectric materials do not confine eva nescent waves outside a waveguide or resonator, leading to cross talk between components. We introduce a paradigm shift in light confinement strategy and show that light can be confined below the diffraction limit using completely transparent artificial media. Our approach relies on controlling the optical momentum of evanescent waves, an important electromagnetic property overlooked in photonic devices. For practical applications, we propose a class of waveguides using this approach that outperforms the cross talk performance by 1 order of magnitude as compared to any existing photonic structure. Our work overcomes a critical stumbling block for nanophotonics by completely averting the use of metals and can impact electromagnetic devices from the visible to microwave frequency ranges.
A light field print (LFP) displays three-dimensional (3D) information to the naked-eye observer under ambient white light illumination. Changing perspectives of a 3D image are seen by the observer from varying angles. However, LFPs appear pixelated d ue to limited resolution and misalignment between their lenses and colour pixels. A promising solution to create high-resolution LFPs is through the use of advanced nanofabrication techniques. Here, we use two-photon polymerization lithography as a one-step nanoscale 3D printer to directly fabricate LFPs out of transparent resin. This approach produces simultaneously high spatial resolution (29 - 45 {mu}m) and high angular resolution (~ 1.6 {deg}) images with smooth motion parallax across 15 {times} 15 views. Notably, the smallest colour pixel consists of only a single nanopillar (~ 300 nm diameter). Our LFP signifies a step towards hyper-realistic 3D images that can be applied in print media and security tags for high-value goods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا