ترغب بنشر مسار تعليمي؟ اضغط هنا

The BRITE-SONG of Aldebaran -- Stellar Music in three voices

228   0   0.0 ( 0 )
 نشر من قبل Paul Beck
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar-like oscillations in red-giant stars are now commonly detected in thousands of stars with space telescopes such as the NASA Kepler mission. Parallel radial velocity and photometric measurements would help to better understand the physics governing the amplitudes of solar-like oscillators. Yet, most target stars for space photometry are too faint for light-demanding ground-based spectroscopy. The BRITE Constellation satellites provide a unique opportunity of two-color monitoring of the flux variations of bright luminous red giants. Those targets are also bright enough to be monitored with high-resolution spectrographs on small telescopes, such as the SONG Network. In these proceedings, we provide a first overview of our comprehensive, multi-year campaign utilizing both BRITE and SONG to seismically characterize Aldebaran, one of the brightest red giants in the sky. Because luminous red giants can be seen at large distances, such well-characterized objects will serve as benchmark stars for galactic archeology.

قيم البحث

اقرأ أيضاً

87 - O. L. Creevey 2011
The Stellar Observations Network Group (SONG) is an international network project aiming to place eight 1-m robotic telescopes around the globe, with the primary objectives of studying stellar oscillations and planets using ultra-precision radial vel ocity measurements. The prototype of SONG is scheduled to be installed and running at the Observatorio del Teide by Summer 2011. In these proceedings we present the project, primary scientific objectives, and instrument, and discuss the observing possibilities for the Spanish community.
We investigate the nature of the long-period radial velocity variations in Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for Alpha Tau spanning over 30 years. An examination of the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Halpha equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e = 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s. Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of the companion, an additional period of ~ 520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Halpha and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The 520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by $sim$ 10 years. This might be due to an activity cycle. The data presented here provide further evidence of a planetary companion to Alpha Tau, as well as activity-related radial velocity variations.
A high-resolution spectropolarimetric survey of all (573) stars brighter than magnitude V=4 has been undertaken with Narval at TBL, ESPaDOnS at CFHT, and HarpsPol at ESO, as a ground-based support to the BRITE constellation of nano-satellites in the framework of the Ground-Based Observation Team (GBOT). The goal is to detect magnetic fields in BRITE targets, as well as to provide one very high-quality, high-resolution spectrum for each star. The survey is nearly completed and already led to the discovery of 42 new magnetic stars and the confirmation of several other magnetic detections, including field discoveries in, e.g., an Am star, two {delta} Scuti stars, hot evolved stars, and stars in clusters. Follow-up spectropolarimetric observations of approximately a dozen of these magnetic stars have already been performed to characterise their magnetic field configuration and strength in detail.
Observations of Beta Lyr in four months of 2018 by three BRITE Constellation satellites (the red-filter BTr and BHr, and the blue-filter BLb) permitted a first, limited look into the light-curve variability in two spectral bands. The variations were found to be well correlated outside the innermost primary minima with the blue variations appearing to have smaller amplitudes than the red; this reduction may reflect their presumed origin in the cooler, outer parts of the accretion disk. This result must be confirmed with more extensive material as the current conclusions are based on observations spanning slightly less than three orbital cycles of the binary. The assumption of an instrumental problem and the applied corrections made to explain the unexpectedly large amplitude of the red-filter light-curve observed with the BTr satellite in 2016 are fully confirmed by the 2018 results.
Context: The study of stellar structure and evolution depends crucially on accurate stellar parameters. The photometry from space telescopes has provided superb data that allowed asteroseismic characterisation of thousands of stars. However, typical targets of space telescopes are rather faint and complementary measurements are difficult to obtain. On the other hand, the brightest, otherwise well-studied stars, are lacking seismic characterization. Aims: Our goal is to use the granulation and/or oscillation time scales measured from photometric time series of bright red giants (1.6$leq$Vmag$leq$5.3) observed with BRITE to determine stellar surface gravities and masses. Methods: We use probabilistic methods to characterize the granulation and/or oscillation signal in the power density spectra and the autocorrelation function of the BRITE time series. Results: We detect a clear granulation and/or oscillation signal in 23 red giant stars and extract the corresponding time scales from the power density spectra as well as the autocorrelation function of the BRITE time series. To account for the recently discovered non-linearity of the classical seismic scaling relations, we use parameters from a large sample of Kepler stars to re-calibrate the scalings of the high- and low-frequency components of the granulation signal. We develop a method to identify which component is measured if only one granulation component is statistically significant in the data. We then use the new scalings to determine the surface gravity of our sample stars, finding them to be consistent with those determined from the autocorrelation signal of the time series. We further use radius estimates from the literature to determine the stellar masses of our sample stars from the measured surface gravities. We also define a statistical measure for the evolutionary stage of the stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا