ترغب بنشر مسار تعليمي؟ اضغط هنا

Incomplete Contracting and AI Alignment

322   0   0.0 ( 0 )
 نشر من قبل Dylan Hadfield-Menell
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that the analysis of incomplete contracting developed by law and economics researchers can provide a useful framework for understanding the AI alignment problem and help to generate a systematic approach to finding solutions. We first provide an overview of the incomplete contracting literature and explore parallels between this work and the problem of AI alignment. As we emphasize, misalignment between principal and agent is a core focus of economic analysis. We highlight some technical results from the economics literature on incomplete contracts that may provide insights for AI alignment researchers. Our core contribution, however, is to bring to bear an insight that economists have been urged to absorb from legal scholars and other behavioral scientists: the fact that human contracting is supported by substantial amounts of external structure, such as generally available institutions (culture, law) that can supply implied terms to fill the gaps in incomplete contracts. We propose a research agenda for AI alignment work that focuses on the problem of how to build AI that can replicate the human cognitive processes that connect individual incomplete contracts with this supporting external structure.

قيم البحث

اقرأ أيضاً

113 - Liming Zhu , Xiwei Xu , Qinghua Lu 2021
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innova tion. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.
The binary relation framework has been shown to be applicable to many real-life preference handling scenarios. Here we study preference contraction: the problem of discarding selected preferences. We argue that the property of minimality and the pres ervation of strict partial orders are crucial for contractions. Contractions can be further constrained by specifying which preferences should be protected. We consider two classes of preference relations: finite and finitely representable. We present algorithms for computing minimal and preference-protecting minimal contractions for finite as well as finitely representable preference relations. We study relationships between preference change in the binary relation framework and belief change in the belief revision theory. We also introduce some preference query optimization techniques which can be used in the presence of contraction. We evaluate the proposed algorithms experimentally and present the results.
Game AI competitions are important to foster research and development on Game AI and AI in general. These competitions supply different challenging problems that can be translated into other contexts, virtual or real. They provide frameworks and tool s to facilitate the research on their core topics and provide means for comparing and sharing results. A competition is also a way to motivate new researchers to study these challenges. In this document, we present the Geometry Friends Game AI Competition. Geometry Friends is a two-player cooperative physics-based puzzle platformer computer game. The concept of the game is simple, though its solving has proven to be difficult. While the main and apparent focus of the game is cooperation, it also relies on other AI-related problems such as planning, plan execution, and motion control, all connected to situational awareness. All of these must be solved in real-time. In this paper, we discuss the competition and the challenges it brings, and present an overview of the current solutions.
Neuro-symbolic artificial intelligence is a novel area of AI research which seeks to combine traditional rules-based AI approaches with modern deep learning techniques. Neuro-symbolic models have already demonstrated the capability to outperform stat e-of-the-art deep learning models in domains such as image and video reasoning. They have also been shown to obtain high accuracy with significantly less training data than traditional models. Due to the recency of the fields emergence and relative sparsity of published results, the performance characteristics of these models are not well understood. In this paper, we describe and analyze the performance characteristics of three recent neuro-symbolic models. We find that symbolic models have less potential parallelism than traditional neural models due to complex control flow and low-operational-intensity operations, such as scalar multiplication and tensor addition. However, the neural aspect of computation dominates the symbolic part in cases where they are clearly separable. We also find that data movement poses a potential bottleneck, as it does in many ML workloads.
To facilitate the widespread acceptance of AI systems guiding decision-making in real-world applications, it is key that solutions comprise trustworthy, integrated human-AI systems. Not only in safety-critical applications such as autonomous driving or medicine, but also in dynamic open world systems in industry and government it is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions. Another key requirement for deployment of AI at enterprise scale is to realize the importance of integrating human-centered design into AI systems such that humans are able to use systems effectively, understand results and output, and explain findings to oversight committees. While the focus of this symposium was on AI systems to improve data quality and technical robustness and safety, we welcomed submissions from broadly defined areas also discussing approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا