ترغب بنشر مسار تعليمي؟ اضغط هنا

Neuro-Symbolic AI: An Emerging Class of AI Workloads and their Characterization

161   0   0.0 ( 0 )
 نشر من قبل Zachary Susskind
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neuro-symbolic artificial intelligence is a novel area of AI research which seeks to combine traditional rules-based AI approaches with modern deep learning techniques. Neuro-symbolic models have already demonstrated the capability to outperform state-of-the-art deep learning models in domains such as image and video reasoning. They have also been shown to obtain high accuracy with significantly less training data than traditional models. Due to the recency of the fields emergence and relative sparsity of published results, the performance characteristics of these models are not well understood. In this paper, we describe and analyze the performance characteristics of three recent neuro-symbolic models. We find that symbolic models have less potential parallelism than traditional neural models due to complex control flow and low-operational-intensity operations, such as scalar multiplication and tensor addition. However, the neural aspect of computation dominates the symbolic part in cases where they are clearly separable. We also find that data movement poses a potential bottleneck, as it does in many ML workloads.



قيم البحث

اقرأ أيضاً

This paper outlines BenchCouncils view on the challenges, rules, and vision of benchmarking modern workloads like Big Data, AI or machine learning, and Internet Services. We conclude the challenges of benchmarking modern workloads as FIDSS (Fragmente d, Isolated, Dynamic, Service-based, and Stochastic), and propose the PRDAERS benchmarking rules that the benchmarks should be specified in a paper-and-pencil manner, relevant, diverse, containing different levels of abstractions, specifying the evaluation metrics and methodology, repeatable, and scaleable. We believe proposing simple but elegant abstractions that help achieve both efficiency and general-purpose is the final target of benchmarking in future, which may be not pressing. In the light of this vision, we shortly discuss BenchCouncils related projects.
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on ma chine learning methods can become crucial. Inductive Logic Programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the process of data. Learning from Interpretation Transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given black-box system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explai nability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
136 - Daniel C. Elton 2020
The ability to explain decisions made by AI systems is highly sought after, especially in domains where human lives are at stake such as medicine or autonomous vehicles. While it is often possible to approximate the input-output relations of deep neu ral networks with a few human-understandable rules, the discovery of the double descent phenomena suggests that such approximations do not accurately capture the mechanism by which deep neural networks work. Double descent indicates that deep neural networks typically operate by smoothly interpolating between data points rather than by extracting a few high level rules. As a result, neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate. To show how we might be able to trust AI despite these problems we introduce the concept of self-explaining AI. Self-explaining AIs are capable of providing a human-understandable explanation of each decision along with confidence levels for both the decision and explanation. For this approach to work, it is important that the explanation actually be related to the decision, ideally capturing the mechanism used to arrive at the explanation. Finally, we argue it is important that deep learning based systems include a warning light based on techniques from applicability domain analysis to warn the user if a model is asked to extrapolate outside its training distribution. For a video presentation of this talk see https://www.youtube.com/watch?v=Py7PVdcu7WY& .
113 - Liming Zhu , Xiwei Xu , Qinghua Lu 2021
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innova tion. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا