ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal renormalization group flow toward perfect Fermi-surface nesting driven by enhanced electron-electron correlations in monolayer vanadium diselenide

86   0   0.0 ( 0 )
 نشر من قبل Ki Seok Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present study we examine nature of a charge ordering transition in monolayer vanadium diselenide ($VSe_{2}$), which would be distinguished from that of $VSe_{2}$ bulk samples, driven by more enhanced electron-electron correlations. Recently, angle resolved photoemission spectroscopy measurements uncovered that the Fermi surface nesting becomes perfect, where the dynamics of hot electrons is dispersionless along the orthogonal direction of the nesting wave-vector. In addition, scanning tunneling microscopy measurements confirmed that the resulting CDW state shows essentially the same modulation pattern as the three dimensional system of $VSe_{2}$. Here, we perform the renormalization group analysis based on an effective field theory in terms of critical CDW fluctuations and hot electrons of imperfect Fermi-surface nesting. As a result, we reveal that the imperfect nesting universally flows into perfect nesting in two dimensions, where the Fermi velocity along the orthogonal direction of the nesting vector vanishes generically. We argue that this electronic reconstruction is responsible for the observation that the CDW transition temperature is much more enhanced to be around $T_{c} > 300$ $K$ than that of the bulk sample.

قيم البحث

اقرأ أيضاً

The electronic structure of vanadium measured by Angular Correlation of electron-positron Annihilation Radiation (ACAR) is compared with the predictions of the combined Density Functional and Dynamical Mean-Field Theory (DMFT). Reconstructing the mom entum density from five 2D projections we were able to determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and need to be included to explain the experimental results.
We report hard x-ray photoemission spectroscopy measurements of the electronic structure of the prototypical correlated oxide SrxCa1-xVO3. By comparing spectra recorded at different excitation energies, we show that 2.2 keV photoelectrons contain a s ubstantial surface component, whereas 4.2 keV photoelectrons originate essentially from the bulk of the sample. Bulk-sensitive measurements of the O 2p valence band are found to be in good agreement with ab initio calculations of the electronic structure, with some modest adjustments to the orbital-dependent photoionization cross sections. The evolution of the O 2p electronic structure as a function of the Sr content is dominated by A-site hybridization. Near the Fermi level, the correlated V 3d Hubbard bands are found to evolve in both binding energy and spectral weight as a function of distance from the vacuum interface, revealing higher correlation at the surface than in the bulk.
91 - Ze Liu , Jing-Yang You , Bo Gu 2021
In atomic physics, the Hund rule says that the largest spin and orbital state is realized due to the interplay of the spin-orbit coupling (SOC) and the Coulomb interactions. Here, we show that in ferromagnetic solids the effective SOC and the orbital magnetic moment can be dramatically enhanced by a factor of $1/[1-(2U^prime-U-J_H)rho_0]$, where $U$ and $U^prime$ are the on-site Coulomb interaction within the same oribtals and between different orbitals, respectively, $J_H$ is the Hund coupling, and $rho_0$ is the average density of states. This factor is obtained by using the two-orbital as well as five-orbital Hubbard models with SOC. We also find that the spin polarization is more favorable than the orbital polarization, being consistent with experimental observations. This present work provides a fundamental basis for understanding the enhancements of SOC and orbital moment by Coulomb interactions in ferromagnets, which would have wide applications in spintronics.
By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted f rom ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.
We analyze the transformation from insulator to metal induced by thermal fluctuations within the Falicov-Kimball model. Using the Dynamic Mean Field Theory (DMFT) formalism on the Bethe lattice we find rigorously the temperature dependent Density of States ($DOS$) at half filling in the limit of high dimensions. At zero temperature (T=0) the system is ordered to form the checkerboard pattern and the $DOS$ has the gap $Delta$ at the Fermi level $varepsilon_F=0$, which is proportional to the interaction constant $U$. With an increase of $T$ the $DOS$ evolves in various ways that depend on $U$. For $U>U_{cr}$ the gap persists for any $T$ (then $Delta >0$), so the system is always an insulator. However, if $U < U_{cr}$, two additional subbands develop inside the gap. They become wider with increasing $T$ and at a certain $U$-dependent temperature $T_{MI}$ they join with each other at $varepsilon_F$. Since above $T_{MI}$ the $DOS$ is positive at $varepsilon_F$, we interpret $T_{MI}$ as the transformation temperature from insulator to metal. It appears, that $T_{MI}$ approaches the order-disorder phase transition temperature $T_{O-DO}$ when $U$ is close to 0 or $ U_{cr}$, but $T_{MI}$ is substantially lower than $T_{O-DO}$ for intermediate values of $U$. Having calculated the temperature dependent $DOS$ we study thermodynamic properties of the system starting from its free energy $F$. Then we find how the order parameter $d$ and the gap $Delta $ change with $T$ and we construct the phase diagram in the variables $T$ and $U$, where we display regions of stability of four different phases: ordered insulator, ordered metal, disordered insulator and disordered metal. Finally, we use a low temperature expansion to demonstrate the existence of a nonzero DOS at a characteristic value of U on a general bipartite lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا