ﻻ يوجد ملخص باللغة العربية
We analyze the transformation from insulator to metal induced by thermal fluctuations within the Falicov-Kimball model. Using the Dynamic Mean Field Theory (DMFT) formalism on the Bethe lattice we find rigorously the temperature dependent Density of States ($DOS$) at half filling in the limit of high dimensions. At zero temperature (T=0) the system is ordered to form the checkerboard pattern and the $DOS$ has the gap $Delta$ at the Fermi level $varepsilon_F=0$, which is proportional to the interaction constant $U$. With an increase of $T$ the $DOS$ evolves in various ways that depend on $U$. For $U>U_{cr}$ the gap persists for any $T$ (then $Delta >0$), so the system is always an insulator. However, if $U < U_{cr}$, two additional subbands develop inside the gap. They become wider with increasing $T$ and at a certain $U$-dependent temperature $T_{MI}$ they join with each other at $varepsilon_F$. Since above $T_{MI}$ the $DOS$ is positive at $varepsilon_F$, we interpret $T_{MI}$ as the transformation temperature from insulator to metal. It appears, that $T_{MI}$ approaches the order-disorder phase transition temperature $T_{O-DO}$ when $U$ is close to 0 or $ U_{cr}$, but $T_{MI}$ is substantially lower than $T_{O-DO}$ for intermediate values of $U$. Having calculated the temperature dependent $DOS$ we study thermodynamic properties of the system starting from its free energy $F$. Then we find how the order parameter $d$ and the gap $Delta $ change with $T$ and we construct the phase diagram in the variables $T$ and $U$, where we display regions of stability of four different phases: ordered insulator, ordered metal, disordered insulator and disordered metal. Finally, we use a low temperature expansion to demonstrate the existence of a nonzero DOS at a characteristic value of U on a general bipartite lattice.
It has long been thought that strongly correlated systems are adiabatically connected to their noninteracting counterpart. Recent developments have highlighted the fallacy of this traditional notion in a variety of settings. Here we use a class of st
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl
We present angle-resolved photoemission experiments on 1T-TiSe2 at temperatures ranging from 13K to 288K. The data evidence a dramatic renormalization of the conduction band below 100K, whose origin can be explained with the exciton condensate phase
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that a
We investigate the 1/3 monolayer $alpha$-Pb/Si(111) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature $sqrt{3}timessqrt{3}$ and low-temperature $3times 3$ reconst