ﻻ يوجد ملخص باللغة العربية
This note intends to give an estimate on the sensitivity of the channel ee to ee at the future ILC250. At variance with other two fermion processes, the so-called Bhabha process is influenced by t-channel Z/photon exchange. In spite of the complexity of the resulting angular distribution of this process, one observes a good sensitivity to Zprime exchange, similar to those observed in annihilation channels. This feature is illustrated within the gauge-Higgs unification model, GHU, which shows an impressive indirect sensitivity to the mass of Zprime particles, up to about 20 TeV for the leptonic channels. Beam longitudinal polarisation and high luminosity are the key ingredients for this result. Measuring the Zprime ee coupling with the Bhabha process allows to measure separately Zprimemumu and Zprimetautau coupling, which serves for a precise test of lepton universality. Zprimebb and Zprimett couplings show good sensitivities to GHU. LHC and HE-LHC sensitivities are also discussed.
With the data collected by LHC at 13 TeV, the CMS collaboration has searched for low mass resonances decaying into two photons. This has resulted in the observation of 3 sd excess around 95 GeV, reminiscent of an indication obtained at LEP2 by combin
In view of the very precise measurements on fermion couplings which will be performed at ILC250 with polarized beams, there is emerging evidence that the LEP1/SLC measurements on these couplings are an order of magnitude too imprecise to match the ac
For the small-angle Bhabha-scattering process, we consider the error budget for the calculation of the LEP/SLC luminosity in the Monte Carlo event generator BHLUMI 4.04, from the standpoint of new calculations of exact results for the respective O(al
We present the calculation of the elastic and inelastic high--energy small--angle electron--positron scattering with a {it per mille} accuracy. PACS numbers 12.15.Lk, 12.20.--m, 12.20.Ds, 13.40.--f
The results obtained by the Event Generators for Bhabha Scattering working group during the CERN Workshop Physics at LEP2 (1994/1995) are presented.