ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-Angle Bhabha Scattering

91   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the calculation of the elastic and inelastic high--energy small--angle electron--positron scattering with a {it per mille} accuracy. PACS numbers 12.15.Lk, 12.20.--m, 12.20.Ds, 13.40.--f



قيم البحث

اقرأ أيضاً

A method to determine the running of alpha from a measurement of small-angle Bhabha scattering is proposed and worked out. The method is suited to high statistics experiments at e+e- colliders, which are equipped with luminometers in the appropriate angular region. A new simulation code predicting small-angle Bhabha scattering is also presented
65 - A.B. Arbuzov 1996
A closed expression for the differential cross section of the large-angle Bhabha $e^+ e^-$ scattering which explicitly takes into account the leading and next-to-leading contributions due to the emission of two hard photons is presented. Both colline ar and semi-collinear kinematical regions are considered. The results are illustrated by numerical calculations.
We consider small--angle electron--positron scattering in Quantum Electrodynamics. Leading logarithmic contributions to the cross--section are explicitly calculated to three loop. Next--to--leading terms are exactly computed to two loop. All the radi ative corrections due to photons as well as pair production are taken into account. The impact of newly evaluated next-to-leading and higher order leading corrections is discussed and numerical results are explicitly given. The results obtained are generally valid for high and low energy $e^+e^-$ colliders. At LEP and SLC these results can be used to reduce the uncertainty on the cross--section below the per mille level. PACS numbers 12.15.Lk, 12.20.--m, 12.20.Ds, 13.40.--f
The results obtained by the Event Generators for Bhabha Scattering working group during the CERN Workshop Physics at LEP2 (1994/1995) are presented.
We study the single-spin asymmetry, $A_N(t)$, arising from Coulomb-nuclear interference (CNI) at small 4-momentum transfer squared, $-t=q^2$, aiming at explanation of the recent data from the PHENIX experiment at RHIC on polarized proton-nucleus scat tering, exposing a nontrivial $t$-dependence of $A_N$. We found that the failure of previous theoretical attempts to explain these data, was due to lack of absorptive corrections in the Coulomb amplitude of $pA$ elastic scattering. Our prominent observation is that the main contribution to $A_N(t)$ comes from interference of the amplitudes of ultra-peripheral and central collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا