ﻻ يوجد ملخص باللغة العربية
In view of the very precise measurements on fermion couplings which will be performed at ILC250 with polarized beams, there is emerging evidence that the LEP1/SLC measurements on these couplings are an order of magnitude too imprecise to match the accuracies reachable at ILC250. This will therefore severely limit the indirect sensitivity to new resonances and require revisiting the possibility to run ILC at the Z pole with polarized electrons. This work was done as a contribution to the ESU 2018-2020.
This note intends to give an estimate on the sensitivity of the channel ee to ee at the future ILC250. At variance with other two fermion processes, the so-called Bhabha process is influenced by t-channel Z/photon exchange. In spite of the complexity
Two next-generation high-energy experiments, the Large Hadron Collider (LHC) and the $e^+e^-$ International Linear Collider (ILC), are highly expected to unravel the new structure of matter and forces from the electroweak scale to the TeV scale. In t
With the data collected by LHC at 13 TeV, the CMS collaboration has searched for low mass resonances decaying into two photons. This has resulted in the observation of 3 sd excess around 95 GeV, reminiscent of an indication obtained at LEP2 by combin
We study the possibility of identifying dark matter properties from XENON-like 100 kg experiments and the GLAST satellite mission. We show that whereas direct detection experiments will probe efficiently light WIMPs, given a positive detection (at th
The ILC Technical Design Report documents the design for the construction of a linear collider which can be operated at energies up to 500 GeV. This report summarizes the outcome of a study of possible running scenarios, including a realistic estimat