ﻻ يوجد ملخص باللغة العربية
This paper introduces Associative Compression Networks (ACNs), a new framework for variational autoencoding with neural networks. The system differs from existing variational autoencoders (VAEs) in that the prior distribution used to model each code is conditioned on a similar code from the dataset. In compression terms this equates to sequentially transmitting the dataset using an ordering determined by proximity in latent space. Since the prior need only account for local, rather than global variations in the latent space, the coding cost is greatly reduced, leading to rich, informative codes. Crucially, the codes remain informative when powerful, autoregressive decoders are used, which we argue is fundamentally difficult with normal VAEs. Experimental results on MNIST, CIFAR-10, ImageNet and CelebA show that ACNs discover high-level latent features such as object class, writing style, pose and facial expression, which can be used to cluster and classify the data, as well as to generate diverse and convincing samples. We conclude that ACNs are a promising new direction for representation learning: one that steps away from IID modelling, and towards learning a structured description of the dataset as a whole.
The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages in analy
We introduce the Genetic-Gated Networks (G2Ns), simple neural networks that combine a gate vector composed of binary genetic genes in the hidden layer(s) of networks. Our method can take both advantages of gradient-free optimization and gradient-base
Echo State Networks (ESNs) are recurrent neural networks that only train their output layer, thereby precluding the need to backpropagate gradients through time, which leads to significant computational gains. Nevertheless, a common issue in ESNs is
Spiking Neural Networks (SNNs) are brain-inspired, event-driven machine learning algorithms that have been widely recognized in producing ultra-high-energy-efficient hardware. Among existing SNNs, unsupervised SNNs based on synaptic plasticity, espec
Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discont