ﻻ يوجد ملخص باللغة العربية
We introduce the Genetic-Gated Networks (G2Ns), simple neural networks that combine a gate vector composed of binary genetic genes in the hidden layer(s) of networks. Our method can take both advantages of gradient-free optimization and gradient-based optimization methods, of which the former is effective for problems with multiple local minima, while the latter can quickly find local minima. In addition, multiple chromosomes can define different models, making it easy to construct multiple models and can be effectively applied to problems that require multiple models. We show that this G2N can be applied to typical reinforcement learning algorithms to achieve a large improvement in sample efficiency and performance.
This paper introduces Non-Autonomous Input-Output Stable Network(NAIS-Net), a very deep architecture where each stacked processing block is derived from a time-invariant non-autonomous dynamical system. Non-autonomy is implemented by skip connections
At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis su
We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our me
Despite their advantages in terms of computational resources, latency, and power consumption, event-based implementations of neural networks have not been able to achieve the same performance figures as their equivalent state-of-the-art deep network
In this article, we study a Radio Resource Allocation (RRA) that was formulated as a non-convex optimization problem whose main aim is to maximize the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This probl