ترغب بنشر مسار تعليمي؟ اضغط هنا

Constant-pressure sound waves in non-Hermitian disordered media

240   0   0.0 ( 0 )
 نشر من قبل Romain Fleury
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions in the free propagation of a wave is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave intensity can be achieved by adding a continuous gain-loss distribution to the disorder. Here we show that this abstract concept can be implemented in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate unambiguously the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain-loss additions can turn localised systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments not only in sound engineering, but also in other related fields such as in non-Hermitian photonics.

قيم البحث

اقرأ أيضاً

In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propag ating in free space. In the presence of any Hermitian potential, a waves constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
The most attractive application of fluid-based thermoacoustic (TA) energy conversion involves traveling wave devices due to their low onset temperature ratios and high growth rates. Recently, theoretical and numerical studies have shown that thermoac oustic effects can exist also in solids. However, these initial studies only focus on standing waves. This paper presents a numerical study investigating the existence of self-sustained thermoelastic oscillations associated with traveling wave modes in a looped solid rod under the effect of a localized thermal gradient. Configurations having different ratios of the rod radius $R$ to the thermal penetration depth $delta_k$ were explored and the traveling wave component (TWC) was found to become dominant as $R$ approaches $delta_k$. The growth-rate-to-frequency ratio of the traveling TA wave is found to be significantly larger than that of the standing wave counterpart for the same wavelength. The perturbation energy budgets are analytically formulated and closed, shedding light onto the energy conversion processes of solid-state thermoacoustic (SSTA) engines and highlighting differences with fluids. Efficiency is also quantified based on the thermoacoustic production and dissipation rates evaluated from the energy budgets.
We study the propagation of waves in a set of absorbing subwavelength scatterers positioned on a stealth hyperuniform point pattern. We show that spatial correlations in the disorder substantially enhance absorption compared to a fully disordered str ucture with the same density of scatterers. The non-resonant nature of the mechanism provides broad angular and spectral robustness. These results demonstrate the possibility to design low-density materials with blackbody-like absorption.
Unconventional Weyl points with topological charges higher than 1 can transform into various complex unconventional Weyl exceptional contours under non-Hermitian perturbations. However, theoretical studies of these exceptional contours have been limi ted to tight-binding models. Here, we propose to realize unconventional Weyl exceptional contours in photonic continua -- non-Hermitian anisotropic chiral plasma, based on ab initio calculation by Maxwells equations. By perturbing in-plane permittivity, an unconventional Weyl point can transform into a quadratic Weyl exceptional circle, a Type-I Weyl exceptional chain with one chain point, a Type-II Weyl exceptional chain with two chain points, or other forms. Realistic metamaterials with effective constitutive parameters are proposed to implement these unconventional Weyl exceptional contours. Our work paves a way toward exploration of exotic physics of unconventional Weyl exceptional contours in non-Hermitian topological photonic continua.
The explorations of the quantum-inspired symmetries in optical and photonic systems have witnessed immense research interests both fundamentally and technologically in a wide range of subjects of physics and engineering. One of the principal emerging fields in this context is non-Hermitian physics based on parity-time symmetry, originally proposed in the studies pertaining to quantum mechanics and quantum field theory, recently ramified into diverse set of areas, particularly in optics and photonics. The intriguing physical effects enabled by non-Hermitian physics and PT symmetry have enhanced significant applications prospects and engineering of novel materials. In addition, it has observed increasing research interests in many emerging directions beyond optics and photonics. This Review paper attempts to bring together the state of the art developments in the field of complex non-Hermitian physics based on PT symmetry in various physical settings along with elucidating key concepts and background and a detailed perspective on new emerging directions. It can be anticipated that this trendy field of interest can be indispensable in providing new perspectives in maneuvering the flow of light in the diverse physical platforms in optics, photonics, condensed matter, opto-electronics and beyond, and offer distinctive applications prospects in novel functional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا