ﻻ يوجد ملخص باللغة العربية
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a waves constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions in the free propagation of a wave is a challenging task with many applications in a number of differe
We present the first experimental observation of modulation instability of partially spatially incoherent light beams in non-instantaneous nonlinear media. We show that even in such a nonlinear partially coherent system (of weakly-correlated particle
Nowadays it is experimentally feasible to create artificial, and in particular, non-Abelian gauge potentials for ultracold atoms trapped in optical lattices. Motivated by this fact, we investigate the fundamental properties of an ultracold Fermi gas
We derive analytical expressions for the coherence in the onset of modulation instability, in excellent agreement with thorough numerical simulations. As usual, we start by a linear perturbation analysis, where broadband noise is added to a continuou
Eigenspectra of a spinless quantum particle trapped inside a rigid, rectangular, two-dimensional (2D) box subject to diverse inner potential distributions are investigated under hermitian, as well as non-hermitian antiunitary $mathcal{PT}$ (composite